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Abstract
This study explores the crucial role of adiabatic fluctuations in the formation of
axion miniclusters (AMC) and their implications the axion as a potential dark
matter candidate in scenarios where the Peccei-Quinn symmetry is sponta-
neously broken before the end of inflation. We investigate the distribution of
energy density and power spectrum of axion density fluctuations, accounting
for both quantum and adiabatic fluctuations. Our analysis reveals a significant
impact of adiabatic fluctuations, especially on large scales, which alters the
formation of AMC and shapes the power spectrum distribution. This highlights
the importance of considering adiabatic fluctuations for a comprehensive un-
derstanding of axions and their cosmological significance, particularly in the
context of low-energy inflation models.

Introduction
• Axions are cold dark matter candidates, with their relic abundance de-

termined by various production mechanisms. AMC formation, influenced
by perturbations post-inflation, is pivotal. We investigate AMC formation
pre-inflation, focusing on adiabatic fluctuations’ impact. Debate centers on
whether AMC detection can distinguish pre- vs. post-inflation axion origin.
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After symmetry breaking:
axion field takes random values

Breaking the PQ symmetry before inflation:
◊i æ takes one value over the observable universe
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Inhomogeneous Dynamics of Axion Field
• The axion field starts to oscillate when the axion mass becomes compara-

ble to the Hubble scale at Tosc.
• Introducing fluctuations in both the axion field, ϑ(k, T ) = ϑ̄(T ) + δϑ(k, T ),

and temperature, T (k) = T̄ + δT (k, T̄ ), the axion equation of motion de-
couples into homogeneous and inhomogeneous components:
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• Assuming that axions suddenly acquire their masses at Tosc, the perturbed
equation can be reduced to a simpler form with the right-hand side equal to
zero and the following initial conditions:

δϑ(k, Tosc) = 0, δϑ̇(k, Tosc) = m2
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Axion Energy Density Distribution
• The axion background energy density, ρ̄a, and the contribution of each k

mode to the energy density perturbation, δρa(k), are
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Density perturbation for different k modes with quantum field fluctuations (left)
and induced by temperature fluctuations (right), fa = 1016 GeV, k̃ ≡ k/kosc.

Power Spectrum of the Density Fluctuations
• The fluctuation in the axion energy density, δa(x), relative to the back-

ground density characterizes density perturbations

δa(x) =
δρa(x)

ρ̄a
.

• We estimate the power spectrum, P (k), which can be fitted by exponential
suppression at large k
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• We also employ the dimensionless power spectrum, ∆2(k),

∆2(k) = k3

2π2 P (k) .
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Power spectrum (left) and dimensionless power spectrum (right) from quan-
tum field fluctuations and induced by temperature fluctuations (dashed), with
fitted approximation (dotted).

Summary and Outlook
• In conclusion, our analysis highlights the significant influence of adiabatic

fluctuations on axion density perturbations, surpassing quantum fluctua-
tions by a few orders of magnitude in low-energy inflation models.

• By examining the power spectrum and dimensionless power spectrum, we
underscore the necessity of considering both types of fluctuations for a
comprehensive understanding of axion density dynamics, especially con-
cerning AMC formations.

• Our findings emphasize the importance of further research to elucidate the
intricate relationship between inflationary dynamics, pre-inflationary mech-
anisms, and AMC formation, crucial for deciphering the true origin of axion
dark matter in the Universe. Addressing these complexities will advance
our understanding of axions and their cosmological implications, offering
insights into the cold dark matter puzzle.


