ALP leptogenesis

CLUSTER OF EXCELLENCE M.Cataldi¹, A.Mariotti², S.Pascoli³, F.Sala³, M.Vanvlasselaer² QUANTUM UNIVERSE

¹Deutsches Elektronen-Synchrotron DESY & II. Institute of Theoretical Physics, Universität Hamburg, Hamburg, Germany ²Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel & The International Solvay Institutes, Brussels, Belgium ³Dipartimento di Fisica e Astronomia, Università di Bologna & INFN, Sezione di Bologna, Bologna, Italy

martina.cataldi@desy.de

Based on work under completion

Summary

- Novel realization of non-thermal leptogenesis from decays of sterile (right-handed) neutrinos (RHNs) sourced via axion-like particles (ALPs) decays in the early Universe
 - Supersymmetric realization where the ALP is the **R**-axion

Motivation

ALPs -> pseudo Nambu-Goldstone bosons of spontaneously broken global symmetries, present in many BSM scenarios

But, how ALPs could affect baryogenesis?

Setup: ALP coupled both to the SM strong sector and RHNs Decay: mostly to RHNs via $a \rightarrow N N$

Thermal history of ALP

$$\mathcal{L}_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a}^{2} a^{2} - \frac{\alpha_{s}}{8\pi} C_{g} \frac{a}{f_{a}} G_{\mu\nu}^{b} \tilde{G}^{b,\mu\nu} + \frac{\partial_{\mu}a}{f_{a}} C_{t} \bar{t}_{R} \gamma^{\mu} t_{R} + \frac{\partial_{\mu}a}{f_{a}} C_{Q_{3}} \overline{Q}_{3} \gamma^{\mu} Q_{3} + \frac{\partial_{\mu}a}{f_{a}} \overline{N}_{R} \gamma^{\mu} N_{R}$$

$$\Gamma(a \rightarrow N N) = \frac{m_{a} M_{N}^{2}}{8\pi f_{a}^{2}} \sqrt{1 - 4 \frac{M_{N}^{2}}{m_{a}^{2}}}$$
Freeze-out $Y_{a} = 2.15 \cdot 10^{-3}, M_{N}$
Freeze-out $Y_{a} = 2.15 \cdot 10^{-3}, M_{N}$

$$Successful leptogenesis for T_{sph}^{dec} \lesssim T_{d}^{a} \lesssim \frac{M_{N}}{20}$$
 with $T_{d}^{a} = \frac{M_{N}}{f_{a}} \sqrt{\frac{m_{a}}{8\pi} \frac{M_{Pl}}{1.66\sqrt{g_{*}}}} \sqrt{1 - 4 \frac{M_{N}^{2}}{m_{a}^{2}}}$

$$Io^{*}$$

$$Intervalue the start of the st$$

Successful leptogenesis for
$$T_{\rm sph}^{dec} \lesssim T_d^a \lesssim \frac{M_N}{20}$$
 with $T_d^a = \frac{M_N}{f_a} \sqrt{\frac{m_a}{8\pi} \frac{M_{\rm Pl}}{1.66\sqrt{g_*}}} \sqrt{1 - 4\frac{M_N^2}{m_a^2}}$
active sphalerons \leftarrow no strong washout

> Matter-dominated era induced by ALP dilutes lepton asymmetry Y_{B-L} due to entropy injection $Y_{B-L} = \frac{Y_{B-L}^{(\text{no dil})}}{D_{SM}}$ with dilution factor $D_{SM} \gtrsim 1.2$

Solving Boltzmann Equations for ALP leptogenesis: baryon asymmetry Yield is enhanced up to factor ~ 100 , thus relaxing the mass tuning splittings of degenerate RHNs in resonant regime by the same factor

 $= m_a/3$

SUSY realization: R-axion and gravitino dark matter

SUSY lower energy spectrum populated by SM, R-axion, RHNs and gravitinos, i.e. Lightest Stable Particles with $m_{3/2} \approx \frac{F}{\sqrt{3}M_{Pl}}$

 \rightarrow Gravitinos produced dominantly via R-axion decay with width $\Gamma_{a \rightarrow \tilde{G}\tilde{G}} \sim \frac{1}{32\pi} \left(\frac{c^2 m_a^5}{F^2} \right)$

Cosmological constraints select a small region of parameter space, accomodating GeV dark matter gravitino and inducing successful ALP leptogenesis with RHN mass at O(10)TeV-scale

