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3. Sensitivity & Advantages of LISA Pathfinder

Recently, the interest in light (DM) candidates has increased, and a standout example of such a The LISA Pathfinder (LPF) mission tested technology feasibility for space-borne GW
WISPy candidate is the Dark Photon (DP) associated to a dark U(1)x interferometry. The key facts are:
1 p— 2 * the LPF science module houses two AuPt alloy test masses (TMs)
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* relative distance: 40cm
- an onboard laser interferometer measures the relative acceleration 5!/

Kinetic mixing | Direct coupling to some current - signal expectation: no net motion (A(q/M)=0)
(Suppressed by plasma effects in direct detection)

We chose to gauge SM global symmetries for the current. Maybe the most prominent example is The workaround we found in\_/olves utilizing the module's al_inIiary channels:
gauging B—L which will be our focus. Nevertheless, our work is applicable to more general choices * space craft (5C) has a different charge-to-mass ratio than the TMs

[1]. We have dubbed this larger class of DPs general Dark Photons. (conservatively A(q/M)>0.018 (GeV)™)
» sensitivity on more than one axis

« amplitude spectral densities (ASDs) are readily available for a simplified analysis
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— Elliptical orbit around Earth N — Large orbit around L1

Sketch of the LPF [4] to plug into the SNR
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gradient in the Lorentz force Frequency f [Hz]
£ 2. Signals of general Dark Photon Dark Matter N 4. Results, Conclusions & Outlook
Ultralight Dark Photon Dark Matter (DPDM) benefits from diverse DM production
mechanisms spanning fuzzy (~10-?' eV) to light (~ 1eV) DM masses. In the this regime, mHz Hz
DM can be described by a classical wave
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This is our theory prediction for the DPDM signal at an accelerometer [2,3]. We get the A0 A0 A0 A0 A0 A0
following signal-to-noise ratio (SNR) for the induced acceleration Vector boson mass |eV]
ACLZ' : :
SNR = V Tof SIS MoIEE Compilation of B—L DP(DM) limits. Previous direct detection limits
1/2 ] . . . "y L
Sa" " (f) pon ~ 0.4GeV/cm? are displayed in red, with our limits in blue. Additionally, the optimistic
T.. Too <1 ¢g=N_. LISA forecast offers further reach and complements earlier projections.
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Using the aforementioned simplifications and assumptions, we can set a conservative yet
- ) world-leading limit on B—L DPDM.
~lanhmass 1910k LPF’s journey to L1,
_— starting in December . . - - - -
2015 I?l was reached A planned, more rigorous approach requires a detailed analysis of the publicly available
in January 2016. Data / data, taking into account the orbit and the directions of the spacecraft axes w.r.t. the DM

polarization as well as theory considerations of the DP distribution.
" own propetsion motl G weela SN 2016 and ended in June
Wil e eaomed 2017. Furthermore, this idea can also be studied for LISA directly which will most likely feature

will be jettisoned a month .
R (Copyright: ESA/ATG . even more sensitive main and auxiliary channels as indicated in our naive forecast.

Ground station: - = .
— Cebreras (Spain) 35 m-diameter antenna ) m e d I a | a b ) /R

Duration of cruise to L1
after last burn: six weeks

Operations:
— Mission operations from ESOC
— Science operations from ESAC
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