
Recently, the interest in light (DM) candidates has increased, and a standout example of such a 
WISPy candidate is the Dark Photon (DP) associated to a dark U(1)X

We chose to gauge SM global symmetries for the current. Maybe the most prominent example is 
gauging B−L  which will be our focus. Nevertheless, our work is applicable to more general choices 
[1]. We have dubbed this larger class of DPs general Dark Photons.
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2. Signals of general Dark Photon Dark Matter
Ultralight Dark Photon Dark Matter (DPDM) benefits from diverse DM production 
mechanisms spanning fuzzy (≃ 10−21  eV) to light (≃  1 eV) DM masses. In the this regime, 
DM can be described by a classical wave

This is our theory prediction for the DPDM signal at an accelerometer [2,3]. We get the 
following signal-to-noise ratio (SNR) for the induced acceleration

3. Sensitivity & Advantages of LISA Pathfinder
The LISA Pathfinder (LPF) mission tested technology feasibility for space-borne GW 
interferometry. The key facts are:

● the LPF science module houses two AuPt alloy test masses (TMs)
● mass: 2kg
● relative distance: 40cm

● an onboard laser interferometer measures the relative acceleration S 
a

 1/2 

● signal expectation: no net motion (∆(q/M)=0)

The workaround we found involves utilizing the module's auxiliary channels:
● space craft (SC) has a different charge-to-mass ratio than the TMs 

(conservatively ∆(q/M) > 0.018 (GeV)−1 )
● sensitivity on more than one axis
● amplitude spectral densities (ASDs) are readily available for a simplified analysis 

[4] to plug into the SNR

4. Results, Conclusions & Outlook

Using the aforementioned simplifications and assumptions, we can set a conservative yet 
world-leading limit on B−L  DPDM.

A planned, more rigorous approach requires a detailed analysis of the publicly available 
data, taking into account the orbit and the directions of the spacecraft axes w.r.t. the DM 
polarization as well as theory considerations of the DP distribution.

Furthermore, this idea can also be studied for LISA directly which will most likely feature 
even more sensitive main and auxiliary channels as indicated in our naive forecast.

Sketch of the LPF 
setup. The two TMs 
are shown in their 
housings. Red 
arrows on the TMs 
and spacecraft 
indicate the 
different Lorentz 
forces.
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Compilation of B−L DP(DM) limits. Previous direct detection limits 
are displayed in red, with our limits in blue. Additionally, the optimistic 
LISA forecast offers further reach and complements earlier projections.
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LPF’s journey to L1, 
starting in December 
2015. L1 was reached 
in January 2016. Data 
taking began in March 
2016 and ended in June 
2017. 
(Copyright: ESA/ATG 
medialab)

Check out the full story here

Find me if I’m gone

(Probably I’m
 somewhere here)

Kinetic mixing
(Suppressed by plasma effects in direct detection)

Direct coupling to some current

Wave DM density
with coherence structure 

(image from [5])

This field is:
● non-relativistic v = k/ω  ≈  k/m ≃  10 − 3 
● coherent λ

c
≃ 2π/(mv)  &  t

c
= 2π/(mv2)

● exercising a quasi-Lorentz force on charges q   with mass M 

Difference in charge-to mass ratio Intrinsic directionality
(unlike for scalars)

ρDM   
∼  0.4 GeV/cm3

        q  =  Nneutron  
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