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INTRODUCTION NUMERICAL ANALYSIS

There is solid theoretical and observational motivation behind the idea of scale invariance as The integration scheme was presented in [4]:
a fundamental symmetry of Nature.

Numerical integration up to the end of inflation (|e| =1)

We consider a recently proposed |1| gravity model featuring scale-invariance at the classical

level — no explicit scale appears in the action — and study its inflationary predictions. ¢

A numerical analysis of the system allows us to corroborate earlier analytical findings and set

robust constraints on the model’s parameters using the latest Cosmic Microwave Background Sufficiently long inflation? — ==—————3 Discard
(CMB) data from Planck and BICEP/Keck. ¢

Compute A, n, a,r

SCALE-INVARIANCE AS A FUNDAMENTAL SYMMETRY OF NATURE 1,

- o .
Why should gravity be scale-invariant in the Early Universe? |2] Are they within some reasonably chosen ranges? === Discard

» Theoretical principle beyond renormalizability; l
Implement CAMB and assign a likelihood based on

» Natural blem:
aturalness problem; how well the model agrees with CMB data

» Flat inflationary potentials;

» Dynamical mass generation.
Figure 1: In the Koch snowflake scale

invariance is realized as a self-similarity.

We derived robust constraints on the model’s parameter that:

THE MUDEL » Exclude conformal symmetry (£ = 1) at high significance;

» Show an overall insensitivity to initial conditions;

The model: scale invariant and quadratic in curvature » Predict a lower bound on the tensor-to-scalar ratio r, that will be testable from next
generation CMB experiments.
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Figure 5: Triangular plot showing 2D joint and 1D marginalized posterior

EI N STEI N FR AM E probability distributions for a selection of parameters. We define Q = a + £2.
Two dynamical degrees of freedom: are we in multi-field inflation? Actually, Noether’s S CALE I NVARIAN CE AN D STARU B I N S KY! S I N FLATI 0 N

current conservation has crucial consequences:

The d q " 0.6 . . - . . Starobinsky’s inflation itself becomes scale-invariant when the R? term dominates the
> e dynamics are constrained to an ellipse : : : : o
. Y b 0.4} : inflationary dynamics. Does the model (1) lead to different predictions?
(Fig. 3);
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is driven by the motion of the field p 00035
Saddle in a potential with a flat plateau (no
. . . Figure 6: 2D contours for the scale-invariant model studied in this
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Figure 4: Mexican hat potential V(p) describing

> p / M the Einstein-frame dynamics of the inflaton p. R E F E R E N c ES

Stable fixed point
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» The symmetry protects from geometrical destabilisation effects [3]|: vanishing
entropy perturbations (8s = 0).
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