

SCALE-INVARIANT INFLATION

Istituto Nazionale di Fisica Nucleare

Trento Institute for **Fundamental Physics** and Applications

1Department of Physics, University of Trento, Via Sommarive 14, I-38123 Povo (TN), Italy 3Department of Theoretical Physics, CERN, Esplanade des Particules 1, 1211 Geneva 23, Switzerland

2TIFPA-INFN, Via Sommarive 14, I-38123 Povo (TN), Italy 4School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK

We consider a recently proposed [1] gravity model featuring scale-invariance at the classical level — no explicit scale appears in the action — and study its inflationary predictions. A numerical analysis of the system allows us to corroborate earlier analytical findings and set robust constraints on the model's parameters using the latest Cosmic Microwave Background (CMB) data from *Planck* and *BICEP/Keck*.

There is solid theoretical and observational motivation behind the idea of scale invariance as a fundamental symmetry of Nature.

The model: scale invariant and quadratic in curvature

$$
\mathcal{L} = \sqrt{-g} \left[\frac{\alpha}{36} R^2 + \frac{\xi}{6} \phi^2 R - \frac{1}{2} (\partial \phi)^2 - \frac{\lambda}{4} \phi^4 \right] \qquad \alpha, \lambda, \xi > 0 \tag{1}
$$

ξ 6 $\phi_0^2 R \equiv$ 1 2 $M_{pl}^2 R$

SCALE-INVARIANCE AS A FUNDAMENTAL SYMMETRY OF NATURE

Why should gravity be scale-invariant in the Early Universe? [2]

➤ The symmetry protects from geometrical destabilisation effects [3]: vanishing entropy perturbations $(\delta s = 0)$.

- ➤ Theoretical principle beyond renormalizability;
- ➤ Naturalness problem;
- ➤ Flat inflationary potentials;
- ➤ Dynamical mass generation.

[1] M. Rinaldi & L. Vanzo, Phys. Rev. D **94** (2016) [arXiv:1512.07186] [2] Wetterich, Nucl. Phys. B, **964** (2021) 115326 [arXiv:2007.08805] [3] S. Renaux-Petel & K. Turzyński, Phys. Rev. Lett. **117** (2016) 141301 [arXiv:1510.01281] [4] W. Giarè, M. De Angelis, C. van de Bruck & E. Di Valentino, JCAP **12** (2023) [arXiv:2306.12414]

- \blacktriangleright Exclude conformal symmetry $(\xi = 1)$ at high significance;
- ➤ Show an overall insensitivity to initial conditions;
- ➤ Predict a lower bound on the tensor-to-scalar ratio *r,* that will be testable from next generation CMB experiments.

RESULTS

arXiv:2403.04316

C. Cecchini^{1,2,3}, M. De Angelis⁴, W. Giarè⁴, M. Rinaldi^{1,2}, and S. Vagnozzi^{1,2}

THE MODEL

JORDAN FRAME

The field ϕ is subjected to an effective potential

Classical scale-symmetry breaking

Dynamical generation of a mass scale

The scalar field takes a non-zero VEV at the minimum $\langle \phi_0^2 \rangle =$ *ξR* 3*λ*

Natural identification with the Planck mass

Starobinsky's inflation itself becomes scale-invariant when the R^2 term dominates the inflationary dynamics. Does the model (1) lead to different predictions?

 n_s and r are anti-correlated like in Starobinsky's model only at fixed $ξ$. Overall, they are correlated:

NUMERICAL ANALYSIS

EINSTEIN FRAME

Two dynamical degrees of freedom: are we in multi-field inflation? Actually, Noether's current conservation has crucial consequences:

➤ The dynamics are constrained to an ellipse (Fig. 3);

> ➤ Effective single-field inflation: inflation is driven by the motion of the field *ρ* in a potential with a flat plateau (no fine-tuning needed!) (Fig. 4);

Figure 4: Mexican hat potential $V(\rho)$ describing the Einstein-frame dynamics of the inflaton ρ .

The integration scheme was presented in [4]:

SCALE INVARIANCE AND STAROBINSKY'S INFLATION

it is potentially possible to discriminate between the two models!

We derived robust constraints on the model's parameter that:

Figure 3: Ellipse constraining the dynamics in the twofields plane. The arrow indicates the direction of motion.

Figure 1: In the Koch snowflake scale invariance is realized as a self-similarity.

Figure 2: Effective potential $V(\phi)$ describing the Jordanframe dynamics of the non-minimally coupled scalar ϕ .

Figure 6: 2D contours for the scale-invariant model studied in this work, compared to those of Starobinsky inflation and α-attractors.