EFT for supercooled phase transitions

Maciej Kierkla (University of Warsaw), Bogumiła Świeżewska, Tuomas V.I. Tenkanen and Jorinde van de Vis

Supercooled PT in a classically scale-invariant model

 $V_{\rm eff}(\phi, T)$ High-T Low-T

High-temperature dimensional reduction ϕ, X g, λ, T $\tau = \frac{1}{T}$ Integrating out the UV modes X ϕ_3 $m_3(T), g_3(T), \lambda_3(T)$ Adding NLO corrections X $S_{3}^{\text{EFT}} = 4\pi \int dr \ r^{2} \left[\frac{1}{2} \left(1 + Z_{3}^{\text{NLO}} \left(\phi_{3} \right) \right) \left(\partial_{i} \phi_{3} \right)^{2} + V_{3}^{\text{LO+NLO}} \left(\phi_{3} \right) \right]$ Gives a large

Higher-order

 M_X

 $\log_{10} \frac{1}{\text{GeV}}$

NLO effects modify "daisy" results significantly, but there are caveats: Z-factor and scale-shifters

