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How did this come about?

The Epoch of Reionization (EoR)
— the final observational frontier  —



Telescopes like Hubble and ALMA have enabled detailed studies of 
the brightest galaxies

[Bouwens+ (2015)]

Galaxies during the first billion years

Slide credit: Andrei Mesinger



MAB= -22

MAB= -18

MAB= -14

MAB= -10

MAB= - 6

Hubble limit 
(no lensing)

JWST limit 
(no lensing)

hidden population of 
abundant ,faint galaxies??

H-cooling threshold

H2 cooling

The first stars and black holes

>99.9% of the first galaxies  
will not be seen even with JWST

Slide credit: Andrei Mesinger



(Line) Intensity mapping (IM)
[Early studies: Hogan and Rees 1979, Sunyaev and Zeldovich 1972,1974, Bebington+ 1986] 

- Measure all structure; sensitive to the integrated emission of all the 
sources; including foregrounds  

- Foregrounds are spectrally smooth, different from the signal 
- Different environments, different lines

[Kovetz+ (2017), credit P. Breysse]

Credit: Dongwoo Chung
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[Furlanetto (2019)]



A plethora of experiments …
[reviews: Kovetz+ (2017, 2019), Bernal and Kovetz (2022)]



Atomic and molecular lines

Credit: Dongwoo Chung



Slide credit: Anastasia Fialkov



The Spin Temperature

Radiative transfer:

Tb(ν) = TS(1 − e−τν ) + Tγe−τν

Spin temperature:
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The 21 cm IM signal
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δ21(x) ≡ [δTb(x) − δ Tb ]/δ Tb

⟨δ̃21(k1)δ̃21(k2)⟩ ≡ (2π)3δD(k1 − k2)P21(k1)

 will be a function of both k and zP21

 
In the limit of the linewidth of sources 
 << frequency resolution,  
we can write  in terms of   

Fluctuations: as a function of  fixed transverse scale, or fixed redshift

δ21 = bmδm + . . .

P21 Pcdm

Statistical fluctuations  
in the intensity mapping signal:

The 21 cm IM signal

21cmFAST; Mesinger, Furlanetto & Cen (2011)



The ‘astrophysical systematic’

There is an interplay of astrophysics and cosmology

ASTROPHYSICS COSMOLOGY



The tracer-halo connection

Bias times  
line intensity Matter fluctuations

b(z) ∝ ∫ dMh
dn

dMh
(z)Ltr(Mh, z)bh(Mh)

I(z) ∝ ∫ dMh
dn

dMh
(z)Ltr(Mh, z)

P1h ∝ ∫ dMh
dn

dMh
Ltr(Mh, z)2 |utr(k |M) |2

Tracer-halo relation

Halo bias

Halo mass function

Small scales; tracer profile in haloSmall scales; tracer profile in halo
Shot noise

Small scales; tracer profile in halo



A halo model for HI

CONSTRAINTS FROM 
CURRENT HI GALAXY, 

DLA, IM DATA

[HP+, MNRAS (2017a, b), HP & Kulkarni (2017)] 



[Dutton+ (2016), Werk+ (2014), Stern+ (2016), Prochaska & Wolfe (2008)] 

HI Fraction  
relative to cosmic

Accretion of fresh HI =
 Consumption for star formation

Insights



          Slope

DLA based21-cm based

Non-unit slope of HIHM: quenching, 
feedback [Birnboim+ 2007; Finlator+ (2013)] 

[Barnes & Haehnelt 2014; Bagla+ (2010), HP+ (2016)] 

Insights



  Lower cutoff

Photoionization increases cooling timescales
Constraints on UV background

[Rees (1986), Efstathiou (1992), 
Babul & Rees (1992),Quinn+ (1996), …] 

… suppression: circular speeds ~ 37 km/s!

Insights



HERA Collaboration (2022a)

21 cm IM observations
Slide credit: Jordan Mirocha
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21 cm IM observations
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HERA Collaboration (2022a)

21 cm IM observations

Our 
current 
limits

Slide credit: Jordan Mirocha



HERA constraints on physics
• Constraints on IGM temperature

• Simplest model predicts the highest temperature

• Remaining models consistent with 95% lower 

limit on z~8 temperature of ~3-5 Kelvin, clearly 
above the adiabatic cooling limit (1.8 K at z=8).

HERA Collaboration et al. (2022b)  
(2108.07282)

Slide credit: Jordan Mirocha



Improved HERA constraints

HERA Collaboration et al. (2023)  
(2210.04912)

• 94 nights (compared to 18 nights) of observing

• Improvements by factors of 2.1 and 2.6 on the previous 

HERA limits at z ~ 7.9, 10.4

IGM has to be  
heated above  
adiabatic  
cooling  
by z ~ 10.4  
at the latest



What about other tracers?



CO transitions

What about other tracers?



CII, 158 micron CO transitions
[Smit+ (Nature, 2018), Pentericci+ (2017)] 

What about other tracers?



The microwave regime 

• CO is a major tracer of star 
formation/ molecular hydrogen, 
bright even at high redshifts 

• ‘Ladder’ of lines 
• Pathfinder: a proof-of-concept, 

single dish focal plane array, 
26-34 GHz 

• Three fields, ~ 4 deg  per field2

CO transitions

— The CO Mapping Array Project  —

Credit: Dongwoo Chung



CO at reionization

Forecasted constraints on molecular hydrogen; population of faint galaxies

COMAP-EoR: Planned second frequency band (13–17 GHz) CO(1-0) line at z = 5.8 – 
7.9 ; cross-correlation picks up the EoR signal

[Breysse+ (2021)]



The submillimetre regime: [CII] and [OIII]
• [OIII] 88  and [CII] 158  
• Good tracers of star forming regions 
• Brightest infrared lines 
• Sky noise/point sources much smaller 
• Fred Young Submillimetre Telescope 

(FYST) : 212 - 428 GHz 
• EXperiment for Cryogenic Large-

Aperture Intensity Mapping (EXCLAIM) : 
420 - 540 GHz

μm μm



[CII] at reionization

[HP (MNRAS 2019), arXiv:1811.01968]  

[Harikane+ (2020), Vallini+ (2021), Laporte+ (2019), Pallotini+ (2017, 2019), Carniani + (2020)…]

 Observations indicate [CII] ‘deficit’ at high-z; if confirmed by IM, 
indicates hard ISM field and/or larger HII regions (but may also 
result from underestimation of [CII] in targeted observations)



Cross-correlations with 21 cm

Slide credit: Steve Cunnington

Cross-correlation with galaxy survey < few sq. deg.: information loss in areas most affected by foregrounds
Mitigated by using IM with e.g. [CO], covering ~ few ten square degrees or more 

[Lidz+ (2009), Beane & Lidz (2018), Beane et al. (2019), Sato-Polito+ (2020), Zhou+ (2020)]



New empirical insights on HI at z ~ 5-7

Consistent with the HI halo model 
in its present form!*

*Note: total power only, 
scale dependence unconstrained

[Heintz+ (2022)]  

[HP, Refregier, Amara, MNRAS (2017)]  

[Peroux & Howk (2020)]  



Cross-correlations of sub-mm & 21 cm 
- near Reionization -

*Assumes complete overlap

[HP (MNRAS, 2018), HP (MNRAS 2019), HP+ (MNRAS 2022), HP (MNRAS 2023, arXiv:2212.08077)] 

(FYST++) x MWA/SKA
z ~ 5.5-6.5, [CII] 158 x HI (MWA) z ~ 7, [CII] 158 x HI (MWA)



To summarize …



Summary



Line Intensity Mapping (IM): large volumes over a wide range of redshifts, species
Epoch of Reionization: second major phase transition of cosmological hydrogen; 
within reach of direct observations; effectively probed by 21 cm line of hydrogen
Astrophysical systematic in IM can be efficiently handled via a data driven halo 
model, predicts mean hydrogen abundance out to z ~ 7  [HP+ (2015, 2016, 2017a, b), HP 
& Kulkarni (2017), HP (2023)]

Latest 21 cm power spectrum upper limits  from HERA show that the hydrogen in 
the IGM must have been heated during reionization, by e.g., X-rays [HERA 
Collaboration (2021, 2022)]

Sub-mm IM (CO/CII/OIII): several advantages, cross-correlations help mitigate 
foreground challenge in 21 cm [e.g., Lidz+ (2011), Sato-Polito+ (2020), Visbal+ (2015)]

COMAP: upper limits on CO power at z ~ 3; COMAP-EoR and COMAP-ERA will 
constrain faint galaxies and molecular hydrogen at the EoR [Breysse+ (2022)]

Future: Proposed experiments (SPHEREX, CDIM) to perform IM with other lines, H
 and Lyman- , out to the EoR; Population III stars from He II IM  [Mas-Ribas+ (2017), 

Heneka & Cooray (2021), Parsons+ (2021), Visbal+ (2015)] 
α α
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Thank you!







δredshift = δreal(1 + fμ2)e−(kσμ)2/2

ℛ1(y = kσ) = π
2

erf(y/ 2)
y

ℛ2(y = kσ) =
π

8
erf(y)

y5 [3f 2 + 4fy2 + 4y4] − e−y2

4y4 [f 2(3 + 2y2) + 4fy2]

Ps
2h(k) = (1 + 2

3 f + 1
5 f 2)Plin(k) × [∫ 1

ρm ∫ dMn(M)Mbh(M)ℛ1(kσ) |uh(k; M) |]
2

Redshift space: dark matter

P1h(k) = 1
ρ2

m
∫ dMn(M)M2 |uh(k |M) |2

P2h(k) = Plin(k)[ 1
ρm ∫ dMn(M)Mbh(M) |uh(k |M) | ]2

Halo profile FT

In redshift space

Ps
1h(k) = 1

(ρm)2 ∫ dMn(M)M2ℛ2(kσ) |uh(k; M) |2

[White (2000), Seljak (2000), Cooray and Sheth (2002) …]



P2h
g (k) = Plin(k) 1

ng ∫ dMMn(M)⟨N⟩bh(M)ug[k, M]
2

P1h
g (k) = 1

n2
g ∫ dMn(M)⟨N(N − 1)⟩ |ug(k, M) |2 + SN,

δg
redshift = (δg

real + δh fμ2), δg → δge−(kσμ)2/2

Ps
g(k) = (F2

g + 2
3 FmFg + 1

5 F2
m)Plin(k) + 1

n2
g ∫ dMn(M)⟨N(N − 1)⟩ℛ2(kσ) |ug(k, M) |2

Redshift space: number weighted 
biased tracers (galaxies)

Fg = 1
ng ∫ dMMn(M)⟨N⟩bh(M)ℛ1(kσ)ug(k, M)

[Seljak (2000)]

Mean number density of galaxies 

Fm = f
ρm ∫ dMMn(M)bh(M)ℛ1(kσ)uh(k, M),

Mean number of galaxies 
within a halo



Subtlety:
Shot noise with and without FoG term:

PSN = 1
ρ2

HI
∫ dMn(M)M2

HI

Pfog
SN (k) = 1

ρ 2
HI

∫ dMn(M)M2
HIℛ3(kσ)

ℛ3(y) =
π

2
erf(y)

y
.

Redshift space: mass weighted 
biased tracers (HI)

[HP (2021), HP+ (2023)]


