GRAVITATIONAL WAVES FROM PHASE TRANSITIONS

BOGUMIŁA ŚWIEŻEWSKA UNIVERSITY OF WARSAW

DIVING INTO "UNOBSERVABLE" PAST

Phase transition $\sim 10^{-11} s$ after $B B$

BIG BANG

The Universe has expanded and cooled ever since

THE BEGINNING The Universe begins 13.7 sillion years ago with an even nown as the Big Bang, Both time and space art created in this event.

UNOBSERVABLE UNIVERSE (PAST)

FRACTION OF A SECOND Rapid expansion occurs during a billionth of a billionth of a billionth of a billionth of a second - the visible Universe is the size of a grapefruit.

1 SECOND

 The Large Hadron Collider at CERN is recreating the conditions thatprevailed a fraction of'a second 'after the Big Bang.

100-1000
 SECONDS

 Nuclei of hydrogen helium, lithium and other light elemients form.300,000. YEARS We can detect radiation from the early formation of the Universe, back as this the Universe is opaque: it's as if a vel has been pulled over it.

POTENTIALLY OBSERVABLE UNIVERSE (PAST)

A FEW HUNDRED MILLION YEARS

Matter clumps together under its own gravity forming the first protogalaxies and within them, the first stars.
Stars are nuclear furnaces in which heavier elements such as carbon, oxygen, silicon and iron are formed. Massive'stars exploding as supernovae create even heavier elements. Such explosions send material into space ready to be incorporated into future generations of stars and planets.

A FEW BILLION YEARS Initially, the expansion of the L few billion years after the Big accelerate. The acceleration is completely unknown

GRAVITATIONAL WAVES FROM A PT

[figure credit: Christopher Moore, Robert Cole and Christopher Berry]

EXPERIMENT: HIGGS EXISTS

THEORY: NO VEV IN THE PAST

PHASE TRANSITION HAPPENED!

STOCHASTIC GRAVITATIONALWAVE BACKGROUND FROM FIRST-ORDER PHASE TRANSITIONS

FIRST-ORDER PHASE TRANSITION

FIRST-ORDER PHASE TRANSITION

FIRST-ORDER PHASE TRANSITION

FIRST-ORDER PHASE TRANSITION

FIRST-ORDER PHASE TRANSITION

FIRST-ORDER PHASE TRANSITION

BUBBLES AND PLASMA SOURCE GRAVITATIONAL WAVES

BUBBLES AND PLASMA SOURCE GRAVITATIONAL WAVES

BUBBLES AND PLASMA SOURCE GRAVITATIONAL

 WAVES

BUBBLES AND PLASMA SOURCE GRAVITATIONAL

 WAVES

THERMODYNAMICAL PARAMETERS VS GW

THERMODYNAMICAL PARAMETERS VS GW

In SM the PT is crossover.

The search for a first-order PT is a search for New Physics!

FIRST-ORDER PT CANNOT BE SM-LIKE

[^0]
FIRST-ORDER PT CANNOT BE SM-LIKE

Scalar extensions of the SM (large coupling)

FIRST-ORDER PT CANNOT BE SM-LIKE

Scalar extensions of the SM (large coupling)

PT for a new field

[^1]
PHASE TRANSITION: ORDINARY VS SUPERCOOLED

PHASE TRANSITION: ORDINARY VS SUPERCOOLED

[^2]
PHASE TRANSITION: ORDINARY VS SUPERCOOLED

[C. Caprini et al., LISA CosWG, JCAP 03 (2020) 024]

[M. Kierkla, BŚ, T.V.I. Tenkanen, J. van de Vis, JHEP 02 (2024) 234]

COSMOLOGICAL

FIRST-ORDER PHASE TRANSITION

NUCLEATION

$$
\Gamma=A_{\mathrm{dyn}} \cdot A_{\mathrm{stat}}=A_{\mathrm{dyn}} \cdot A_{\mathrm{det}} \cdot \exp (-S)
$$

NUCLEATION

$$
\Gamma=A_{\mathrm{dyn}} \cdot A_{\mathrm{stat}}=A_{\mathrm{dyn}} \cdot A_{\mathrm{det}} \cdot \exp (-S)
$$

HOW FAR WILL YOU DARE TO GO?

Daisy resummation

[P. Arnold, O. Espinosa, Phys.Rev.D 47 (1993)
3546, R.R. Parwani, Phys.Rev.D 45 (1992) 4695]

HOW FAR WILL YOU DARE TO GO?

Daisy resummation

[P. Arnold, O. Espinosa, Phys.Rev.D 47 (1993)
3546, R.R. Parwani, Phys.Rev.D 45 (1992) 4695]

Dimensional reduction

[P. H. Ginsparg, Nucl. Phys. B170 (1980) 388, T. Appelquist, R. D. Pisarski, Phys. Rev. D23 (1981) 2305, K. Kajantie, M. Laine, K. Rummukainen, M. E. Shaposhnikov, Nucl. Phys. B 458 (1996) 90]

HOW FAR WILL YOU DARE TO GO?

Daisy resummation

Now available in a public code DRalgo

[A. Ekstedt, T.V.I. Tenkanen, P. Schicho,

Comput.Phys.Commun. 288 (2023) 108725]

DR FOR SUPERCOOLED PT

DR FOR SUPERCOOLED PT

see the poster by Macie: Kierkla

DR FOR SUPERCOOLED PT

see the pester by Maciej Kierkla

NUCLEATION

$$
\Gamma=A_{\mathrm{dyn}} \cdot A_{\mathrm{stat}}=A_{\mathrm{dyn}} \cdot A_{\mathrm{det}} \cdot \exp (-S)
$$

NUCLEATION

$$
\Gamma=A_{\mathrm{dyn}} \cdot A_{\mathrm{stat}}=A_{\mathrm{dyn}} \cdot A_{\mathrm{det}} \cdot \exp (-S)
$$

NUCLEATION

$$
\Gamma=A_{\mathrm{dyn}} \cdot A_{\mathrm{stat}}=A_{\mathrm{dyn}} \cdot A_{\mathrm{det}} \cdot \exp (-S)
$$

NUCLEATION

$$
\Gamma=A_{\mathrm{dyn}} \cdot A_{\mathrm{stat}}=A_{\mathrm{dyn}} \cdot A_{\mathrm{det}} \cdot \exp (-S)
$$

$A_{\text {det }}$ necessary to increase precision
\rightarrow BubbleDet

[A. Ekstedt, O. Gould, J. Hirvonen, JHEP 12 (2023) 056]

NUCLEATION

$$
\Gamma=A_{\mathrm{dyn}} \cdot A_{\mathrm{stat}}=A_{\mathrm{dyn}} \cdot A_{\mathrm{det}} \cdot \exp (-S)
$$

$A_{\text {det }}$ necessary to increase precision
\rightarrow BubbleDet
[A. Ekstedt, O. Gould, J. Hirvonen, JHEP 12 (2023) 056]

[O.Gould, A.Kormu, D. J. Weir, 2404.01876]

BUBBLE-WALL VELOCITY

FOR GW AND BARYOGENESIS

WALL VELOCITY

[G. D. Moore and T. Prokopec, Phys. Rev. D 52 (1995) 7182-7204,
Phys. Rev. Lett. 75 (1995) 777-780,
B. Laurent and J. M. Cline, Phys. Rev. D 102 no. 6, (2020) 063516,

Phys. Rev. D 106 no. 2, (2022) 023501,
G. C. Dorsch, S. J. Huber, and T. Konstandin, JCAP 12 (2018) 034]

RUNAWAY BUBBLES?

[D. Bodeker and G. D. Moore, JCAP 05 (2009)
009, JCAP 05 (2017) 025,
S. Höche, J. Kozaczuk, A. J. Long, J. Turner, and Y. Wang, JCAP 03 (2021) 009
Y. Gouttenoire, R. Jinno, and F. Sala, JHEP 05 (2022) 004]

RUNAWAY BUBBLES?

[M. Kierkla, A. Karam, BŚ, JHEP 03 (2023) 007

RUNAWAY BUBBLES?

$$
\beta R_{\mathrm{eq}}
$$

$\longrightarrow 0.05-0.50-5.00-50.00-0.0$

Bubbles, $T_{r r} \propto R^{-3}$

Fluid, $T_{r r} \propto R^{-3}, v_{\text {shell }}=1$

IS LOCAL THERMAL EQUILIBRIUM USEFUL?

[T. Konstandin, J. M. No, JCAP 02 (2011) 008, M. Barroso Mancha, T. Prokopec, and BS, JHEP 01 (2021) 070, S. Balaji, M. Spannowsky, and C. Tamarit, JCAP 03 (2021) 051, W.-Y. Ai, B. Garbrecht, and C. Tamarit, JCAP 03, (2022) 015, W.-Y. Ai, B. Laurent, J. van de Vis, JCAP 07 (2023) 002, M. Lewicki, M. Merchand, and M. Zych, JHEP 02 (2022) 017]

IS LOCAL THERMAL EQUILIBRIUM USEFUL?

[T. Konstandin, J. M. No, JCAP 02 (2011) 008, M. Barroso Mancha, T. Prokopec, and BS, JHEP 01 (2021) 070, S. Balaji, M. Spannowsky, and C. Tamarit, JCAP 03 (2021) 051, W.-Y. Ai, B. Garbrecht, and C. Tamarit, JCAP 03, (2022) 015 , W.-Y. Ai, B. Laurent, J. van de Vis, JCAP 07 (2023) 002, M. Lewicki, M. Merchand, and M. Zych, JHEP 02 (2022) 017]

[W.-Y. Ai, X. Nagels, M. Vanvlasselaer, JCAP 03 (2024) 037]

IS LOCAL THERMAL EQUILIBRIUM USEFUL?

[T. Konstandin, J. M. No, JCAP 02 (2011) 008, M. Barroso Mancha, T. Prokopec, and BS, JHEP 01 (2021) 070, S. Balaji, M. Spannowsky, and C. Tamarit, JCAP 03 (2021) 051, W.-Y. Ai, B. Garbrecht, and C. Tamarit, JCAP 03, (2022) 015 , W.-Y. Ai, B. Laurent, J. van de Vis, JCAP 07 (2023) 002, M. Lewicki, M. Merchand, and M. Zych, JHEP 02 (2022) 017]

[W.-Y. Ai, X. Nagels, M. Vanvlasselaer, JCAP 03 (2024) 037]

[T. Krajewski, M. Lewicki, M. Zych, JHEP 05 (2024) 011]

IS LOCAL THERMAL EQUILIBRIUM USEFUL?

[T. Konstandin, J. M. No, JCAP 02 (2011) 008, M. Barroso Mancha, T. Prokopec, and BS, JHEP 01 (2021) 070, S. Balaji, M. Spannowsky, and C. Tamarit, JCAP 03 (2021) 051, W.-Y. Ai, B. Garbrecht, and C. Tamarit, JCAP 03, (2022) 015 , W.-Y. Ai, B. Laurent, J. van de Vis, JCAP 07 (2023) 002, M. Lewicki, M. Merchand, and M. Zych, JHEP 02 (2022) 017]

[W.-Y. Ai, X. Nagels, M. Vanvlasselaer, JCAP 03 (2024) 037]

[T. Krajewski, M. Lewicki, M. Zych, JHEP 05 (2024) 011]

WHAT WILL WE
 LEARN FROM OBSERVATIONS?

PARAMETER RECONSTRUCTION WITH LISA

PARAMETER RECONSTRUCTION WITH LISA

[C. Caprini at al., LISA CosWG, 2403.03723]

GRAVITATIONAL WAVE DETECTORS

[figure credit: Christopher Moore, Robert Cole and Christopher Berry]

HAVE WE ALREADY SEEN A SIGNAL IN PTA?

HAVE WE ALREADY SEEN A SIGNAL

[Y. Gouttenoire, Phys.Rev.Lett. 131 (2023) 17]

OTHER EFFECTS OF PT
PRIMORDIAL BLACK HOLES AND SECONDARY GW

PRIMORDIAL BLACK HOLES

a)
c)

Old vacuum-dominated region (outside bubbles)

New radiation-dominated region (inside bubbles)
[Y. Gouttenoire, T. Volansky, 2305.04942 [hep-ph]]

Too slow PTs excluded due to overabundance of PBH .

secondary Gravitational waves

[M. Lewicki, P. Toczek, V. Vaskonen, 2402.04158]

secondary gravitational wave

See poster ttalk of Piotr Toczek

[^3]SUMMARY

SUMMARY

SUMMARY

Progress in (non)perturbative treatment of PTs. More needed!

SUMMARY

Progress in
(non)perturbative treatment of PTs. More needed!

We can learn about New Physics using GWs from PTs.

SUMMARY

Progress in (non)perturbative treatment of PTs. More needed!

We can learn about New Physics using GWs from PTs.

Other interesting phenomena associated with the PT
(baryogenesis, DM, PBH).

[^0]: [Figure from: Phys.Rev.D 100 (2019) 11, 115024, O. Gould, J. Kozaczuk, L. Niemi, M. J. Ramsey-Musolf, T. V.I. Tenkanen, D. J. Weir]

[^1]: [Figure from: Phys.Rev.D 100 (2019) 11, 115024, O. Gould, J. Kozaczuk, L. Niemi, M. J. Ramsey-Musolf, T. V.I. Tenkanen, D. J. Weir]

[^2]: [C. Caprini et al., LISA CosWG, JCAP 03 (2020) 024]

[^3]: [M. Lewicki, P. Toczek, V. Vaskonen, 2402.04158]

