# Line-Intensity Mapping for new physics

#### José Luis Bernal Instituto de Física de Cantabria



Eucapt 2024 15/05/2024

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line  $\rightarrow$  know redshift  $\rightarrow$  3D maps



- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line  $\rightarrow$  know redshift  $\rightarrow$  3D maps



- $1 \deg^2 \text{ at } z = 5, \Delta z = 0.2$
- All haloes

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line  $\rightarrow$  know redshift  $\rightarrow$  3D maps



- $1 \deg^2 \text{ at } z = 5, \Delta z = 0.2$
- All haloes
- Only  $M_* > 10^{9.5} M_{\odot}$

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line  $\rightarrow$  know redshift  $\rightarrow$  3D maps



- Intensity fluctuations:
  - trace matter density fluctuations
  - Depend on line luminosity -> extragalactic astrophysics
- For cosmology: Noisy map of *all* galaxies and IGM (vs detailed map of brightest)
- For astrophysics: Aggregate of *all* emitters and diffuse emission



- Intensity fluctuations:
  - trace matter density fluctuations
  - Depend on line luminosity -> extragalactic astrophysics
- For cosmology: Noisy map of *all* galaxies and IGM (vs detailed map of brightest)
- For astrophysics: Aggregate of *all* emitters and diffuse emission

Matter power spectrum -> Galaxy bias -> astrophysical processes

Three main features that make LIM unique:

- 1. Capture faint and diffuse sources
- 2. Access beyond the reach of galaxy surveys
- 3. Quickly map large three-dimensional volumes

<u>New physics from:</u> changing P(k), dn/dL [dndM+affecting astro], new signals, ultra-large scales

\*21cm from Cosmic Dawn + Reionization

# Information return from line-intensity maps

• LIM fluctuations trace matter: cosmology, but degenerate with astrophysics  $T_i \propto L(M_i, \Theta_i)$ 

$$\delta T \sim \langle Tb 
angle \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* 
angle \sim \langle Tb 
angle^2 P_m + X_{LT}(z)^2 \int \mathrm{d} \mathrm{L} rac{\mathrm{d} n}{\mathrm{d} L} L^2$$

- Limitations:
  - Intensity maps are *highly* non-Gaussian: lots of information beyond P(k)
  - P(k) only depends on the 1st and 2nd [sic] moments of the luminosity function
  - P(k) mostly relevant for cosmology, degenerate with astro, but incapable to constrain it
- VID: 1pt distribution of intensities, proxy for the full luminosity function

$$\mathcal{P}(T) = \sum_{N=0}^{\infty} \mathcal{P}_N(T) \mathcal{P}(N) \propto \left( \underbrace{\Phi * \Phi * \ldots * \Phi}_{N=0} \right) (T) \quad \text{Breysse+(2016, 2017)}$$

P(k): best for cosmo, integrals of luminosity functions

VID: best for astro, integrals of clustering

## Contamination of intensity maps

- Continuous foregrounds (loss of long line-of-sight modes):
  - Uncorrelated: Galactic or CIB
    - Component separation Cunnington+ (2023), Carucci+ (2023), van Cuyk+ (2023)
    - Foreground wedge Pober (2014)
  - Correlated: CIB
    - Combine with galaxy surveys Switzer+ (2015), Switzer (2017), Switzer+ (2018)
    - Neural networks Pfeffer+ (2019), Moriwaki+ (2021)

### Line interlopers



Silva + (2021)

# Contamination of intensity maps

- Continuous foregrounds (loss of long line-of-sight modes):
  - Uncorrelated: Galactic or CIB
    - Component separation Cunnington+ (2023), Carucci+ (2023), van Cuyk+(2023)
    - Foreground wedge Pober (2014)
  - Correlated: CIB
    - Combine with galaxy surveys Switzer+ (2015), Switzer (2017), Switzer+ (2018)
    - Neural networks Pfeffer+ (2019), Moriwaki+ (2021)
- Line interlopers (redshift and signal confusion):
  - Masking: targeted or blind Breysse+ (2015), Sun+ (2018), van Cuyk+ (2023)
  - Model them:projection effects Lidz & Taylor (2016), Sun+ (2018), Gong+ (2020)
  - Spectral templates: de-project at pixel level Cheng+(2020)
  - Nulling interlopers: similar to CMB lensing nulling Bernal & Baleato-Lizancos (in prep)
  - Exotic unknown signals!! DM and/or neutrino decay

Creque-Sarbinowski & Kamionkowski (2018), Bernal+ (2021), Nishikawa (2021), Bernal+ (2022)

### Sensitivity in axion context



JLB, Caputo, Kamionkowski

### Sensitivities to neutrino decay



### LIM BAO



Current and coming constraints using galaxy surveys

Bernal +(2019b)

### LIM BAO



Add VAO at higher redshift (Muñoz, 2019)

Current and coming constraints using galaxy surveys

+ Star-Formation-related LIM BAO

Bernal +(2019b)

# Tomographic P(k) and big volumes



# Combining VID and P(k)

Combination significantly improves constraints on the luminosity function (Ihle+2019)

> P(k) - VID covariance proportional to integrated bispectrum (Sato-Polito & Bernal 2022)

Breaks degeneracies between astro & cosmo: improves beyond-LCDM sensitivity (Sabla, Bernal+ 2024)





# Combining VID and P(k)

Combination significantly improves constraints on the luminosity function (Ihle+2019)

#### <u>Beyond-LCDM with VID+P(k):</u> best for models that affect HMF -> dn/dL

(e.g., nCDM, fNL, ...) (Bauer+2020)

| P(k) - VID covariance       |
|-----------------------------|
| proportional to             |
| integrated bispectrum       |
| (Sato-Polito & Bernal 2022) |

Breaks degeneracies between astro & cosmo: improves beyond-LCDM sensitivity (Sabla, Bernal+ 2024)

|                                                   |          | COMAP-Y5    |             |             | COMAP-XL    |            |             |
|---------------------------------------------------|----------|-------------|-------------|-------------|-------------|------------|-------------|
| Parameter                                         | Fiducial | $P_0$       | $B_i$       | $P_0 + B_i$ | $P_0$       | $B_i$      | $P_0 + B_i$ |
| $k_{\rm cut} \ [{ m Mpc}^{-1}]$                   | 0.5      | $\pm 8.74$  | $\pm 41.93$ | $\pm 2.42$  | $\pm 11.56$ | $\pm 1.48$ | $\pm 1.24$  |
| n                                                 | 0.1      | $\pm 15.95$ | $\pm 12.16$ | $\pm 0.24$  | $\pm 25.75$ | $\pm 0.15$ | $\pm 0.11$  |
| $\Omega_a/\Omega_d \ (m_a = 10^{-32} \text{ eV})$ | 0.04     | $\pm 0.76$  | $\pm 0.52$  | $\pm 0.04$  | $\pm 0.17$  | $\pm 0.31$ | $\pm 0.02$  |
| $\Omega_a/\Omega_d~(m_a = 10^{-27}~{\rm eV})$     | 0.04     | $\pm 0.19$  | $\pm 0.18$  | $\pm 0.02$  | $\pm 0.09$  | $\pm 0.07$ | $\pm 0.01$  |
| $\Omega_a/\Omega_d \ (m_a = 10^{-24} \text{ eV})$ | 0.04     | $\pm 78.2$  | $\pm 0.14$  | $\pm 0.06$  | $\pm 20.4$  | $\pm 0.06$ | $\pm 0.02$  |
| $f_{ m NL}$                                       | 0        | $\pm 3140$  | $\pm 71$    | $\pm 3.2$   | $\pm 220$   | $\pm 14.2$ | $\pm 0.38$  |

(Sabla, Bernal+ 2024)

# Many opportunities







# All probes, all cross-correlations

- SkyLine: Mock line observations (almost any line, contaminants, etc), LRGs and ELGs, ...
- Agora: CMB secondaries and galaxy lensing
- Coherent when MDPL2 (and UniverseMachine) used for SkyLine!



- Opportunities to model and prepare for cross correlations with any probe
- Especially interesting for LIM x LIM, useful for correlations with lensing (project already proposed)

Sato-Polito, Kokron, Bernal (2022)



### Conclusions

- LIM has the potential to become a key pillar for observational cosmology
  - Capture faint and diffuse sources
  - Access beyond reach of galaxy surveys
  - Quickly map huge volumes

#### • Challenges

- Degeneracies with astrophysics (and other observational effects like line broadening)
- Non linear bias and other non-trivial modeling
- Foregrounds and contaminants

#### • Reasons to be optimistic

- Many pathfinders and experiments observing and funded (and many theory efforts too!)
- Many (very complementary) summary statistics
- New information, and checks, through cross correlations
- Excellent probe for new physics (HMF, energy injection, P(k), new signals, ...)

# Back up slides

## Filling the gaps in cosmic history



adapted from)

Bernal & Kovetz (2022)

- Pathfinder stage
- Intrinsically multitracer
- All kind of astrophysics
- Huge range of freq (syst.)
- Planck x QSOs ([CII]), GBT, ...

### Intrinsically multitracer



 $\Phi(L_1, L_2, ...)$ : combine with continuum, and statistically probe all the SED

# Using LIM for cosmology

- Focus on the anisotropic power spectrum:
- Alcock-Paczynski effect:  $k_{\parallel}^{meas} = k_{\parallel}^{true} \alpha_{\parallel}; \qquad k_{\perp}^{meas} = k_{\perp}^{true} \alpha_{\perp}$

• Breaking degeneracies: 
$$P(k,\mu,z) = \left(\frac{\langle T \rangle b\sigma_8 + \langle T \rangle f\sigma_8 \mu^2}{1 + 0.5(k\mu\sigma_{FoG})^2}\right)^2 \frac{P_m(k)}{\sigma_8^2} + P_{shot}(z)$$

- Include experimental window function:  $\tilde{P}(k, \mu, z) = W(k, \mu, z)P(k, \mu, z)$
- Legendre multipoles: up to the hexadecapole!  $\alpha_{\parallel}, \alpha_{\perp}, \langle T \rangle f \sigma_8$

$$\tilde{P}_{\ell}(k^{meas}, z) = \frac{H(z)}{H^{fid}(z)} \left(\frac{D_A^{fid}(z)}{D_A(z)}\right)^2 \frac{2\ell+1}{2} \int_{-1}^{1} d\mu^{meas} \,\tilde{P}(k^{true}, \mu^{true}, z) \mathcal{L}_{\ell}(\mu^{meas})$$

User's guide:JLB+2019a

**BAO cosmology!** 

# Using LIM for cosmology

Bernal+ (2019a)

• LIM fluctuations trace matter: cosmology, but degenerate with astrophysics  $T_i \propto L(M_i, oldsymbol{\Theta}_i)$ 

$$\delta T \sim \langle Tb 
angle \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* 
angle \sim \langle Tb 
angle^2 P_m + X_{LT}(z)^2 \int \mathrm{d} \mathrm{L} rac{\mathrm{d} n}{\mathrm{d} L} L^2 \, .$$

• Careful with interpretation of shot noise!!



Bernal & Kovetz (2022)

COMAP-like but for 200 deg<sup>2</sup>

# SkyLine

- Coherent multi-line, multi-probe simulated sky
- Mock map for a given experiment with *all* contributions, coherent with other probe



### VID: extended contribution



Bernal (2023)

# Which halos probed by LIM?

- We can use the maps to study if LIM is actually sensitive to faint emitters (which halos dominate the temperature of each voxel?)
- Many faint halos or few bright ones?
- Dimmest voxels dominated by light halos, more massive halos more common in brightest voxels
- Luminosity weighted distribution is *very* similar



Sato-Polito, Kokron, Bernal (2022)

# Using LIM for local PNG: P(k)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$
 Karkare+ (2022)

- Assumes:
  - Observations in 80-310 GHz
  - R =300
  - Noise from interlopers
  - Excellent observing sites (only instrument noise)
  - Autopower spectrum: get to improve with x-corr.
  - Optimal sky coverage
- See also Bernal+(2019), Moradinezhad Dizgah+(2018, 2019), Liu & Breysse (2021), Chen & Pullen (2022), ...





# Using LIM for local PNG: P(k)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$
 Karkare+ (2022)

- Limitations:
  - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
  - More challenges for PNG from B(k)
  - P(k) only depends on 1<sup>st</sup> and 2<sup>nd</sup> moments of the luminosity functions
  - P(k) mostly relevant for cosmology, but degenerate with some astro



Assuming known  $b_{\phi}$ , see Alex's talk

# Using LIM for local PNG: kSZ tomography

- $\langle T\delta\delta \rangle$ : LIM as tracer of LSS
- $v_r$  reconstruction
- multitracer LIM x velocity
- Higher z (bigger volume)



Sato-Polito, Bernal+ (2021)

### **DM & Neutrinos**

- Dark Matter:
  - Vast variety of candidates with rich phenomenology
  - Weak coupling with baryons: decaying dark matter (axion, sterile neutrinos, ...)
  - Decays trace directly the matter distribution



$$\chi \rightarrow \gamma + \gamma$$

$$u_{\gamma} = m_{\chi}c^2/2h_P$$

### **DM & Neutrinos**

- Neutrinos:
  - Controlled by the electromagnetic transition moments
  - SM prediction of neutrino lifetime:  $\tau_{\nu} \sim 10^{40-50}$  s ( $\gg t_U$ )
  - BSM physics may enhance transition moments: detection → BSM physics!
  - Traces directly the cosmic neutrino density field



### Effect in power spectrum



# Effect in VID

• Each voxel receives contributions from both emissions:

 $T_{tot} = T_l + T_{noise}$ 

$$\mathcal{P}_{tot+X}(T) = \left( (\mathcal{P}_l * \mathcal{P}_X) * \mathcal{P}_{noise} \right)(T); \qquad \mathcal{P}_X = \mathcal{P}_{\widetilde{\rho}} / \langle T_X \rangle$$

- $\mathcal{P}_{\widetilde{\rho}}$ : PDF of normalized densities. Obtained from simulations
- We provide the first analytic fit to  $\mathcal{P}_{\widetilde{\rho}_{\nu}}$ , using Quijote simulations and symbolic regression

# Effect in VID

• Each voxel receives contributions from both emissions:



No noise contribution included

# Combining VID and P(k)

Correlation coefficient

$$c_{ij} = \frac{\operatorname{Cov}[\mathcal{B}_i, P(k_j)]}{\sigma_{\mathcal{B}_i} \sigma_{P(k_j)}}$$

- Analytic covariance computed using:  $\mathcal{P}(I) \rightarrow \mathcal{P}(I, \delta(\mathbf{x}))$
- Proportional to collapsed bispectrum
- Example for COMAP Y5: CO(1-0), z ~ 2.4  $\stackrel{(s)}{\vdash}$
- Definitely important to take into account very soon

