EuCAPT Symposium - 16th May, 2024

Implications of GW detection for **Stellar Astrophysics**

Valeriya Korol

with help from Lieke van Son, Aleksandra Olejak and Selma de Mink

Max Planck Institute for Astrophysics (MPA) korol@mpa-garching.mpg.de www.valeriakorol.com

Image credit: ESA

THE SPECTRUM OF GRAVITATIONAL WAVES

What are we learning from high-frequency GW detections?

Image credit: ESA

Over **100** detections by now and still counting!

Over **100** detections by now and still counting!

How did they form?

The separation challenge: How can we get BHs close enough to coalesce within a Hubble time?

The separation challenge: Hov

enough to coalesce within a H

~10

The observed BH mass distribution

There is a lack of 3-6 M_o BHs

... but the progenitor stars of lower-mass BHs are much more common than the progenitor stars of higher mass BHs ?!

There is a lack of 3-6 M_o BHs

The observed BH mass distribution

No BHs above 45 M_{\odot} were expected from stellar evolution. Yet, here they are ...

The LVK Collaboration (2021)

Pair instability supernova

Figure adapted from Farag et al. 2022

Pair instability supernova

Figure adapted from Farag et al. 2022

How to get binary BH mergers in the mass gap?

Credit: Lieke van Son

What are we learning from high-frequency GW detections?

- Binary BH (and NS) formation channels
 - Supernova mechanism and possibly nuclear reaction rates
- (Stellar) BH mass function
 - Evolution of this mass function with redshift (not covered in this talk)

and much more ...

This is only the beginning ...

What will we learn in the milli-Hz GW detections?

Image credit: ESA

LISA will detect a variety of binaries in the Milky Way

LISA's potential to solve type Ia SN progenitor dilemma

or

Single degenerate channel

Image credits: NASA / CXC / M. Weiss

Double degenerate channel

*This is an oversimplified picture, there are many many nuances to be considered...

LISA's potential to solve type Ia SN progenitor dilemma

Complete sample up to orbital periods of ~15 min across the entire Milky Way!

Korol et al. in prep.

LISA's potential to solve type Ia SN progenitor dilemma

At GW frequencies near to the merger (< 0.01 Hz) chirp mass constraints at 0.01-0.001%

Chirp mass constraint translates into a **lower bound on the primary mass** making it possible to forecast the possibility and the type of thermonuclear transient.

Korol et al. in prep.

There is a 4-7% chance that we will see a type Ia SN with LISA How its GW signal will look like?

Korol et al. in prep. based on Pakmor et al. 2022 and Morán-Fraile el al. 2023

There is a 4-7% chance that we will see a type Ia SN with LISA How its GW signal will look like?

Double detonation mechanism

- 1. Dynamical accretion of helium on more massive WD (>0.8 M☉) ignites its helium shell
- 2. Helium detonation converges in the centre to ignite WD's CO core (type Ia supernova)

Korol et al. in prep. based on Pakmor et al. 2022 and Morán-Fraile el al. 2023

Making a map of the Milky Way with LISA

LISA's precision in locating WD+WD binaries will constrain structural parameters of the Milky Way, providing new, independent insights into its shape:

- Bulge Scale Radius: 2% precision
- Disk Scale Radius: **3%** precision.
- Disk Scale Height: **16%** precision
- Bar Axis Ratio: **10%** precision
- Bar Length: **1%** precision
- Bar Orientation Angle: **<1**°

Korol et al. 2019; Wilhelm, Korol et al. 2021 (see also Adams et al. 2012)

LISA Astrophysics white paper, Amaro-Seoane et al./w Korol 2023 LISA Definition Study Report (Red Book), Colpi et al./w Korol 2024

(Re-)discovering Milky Way satellites with GWs

Roebber et al. (incl.Korol) 2020; Korol et al. (2020,2021); Keim, Korol et al. (2023)

What will we learning from milli-Hertz frequency GW detections?

- Invisible stellar content of the Milky Way: BH, NS, and WD in binaries
- Type la supernova progenitors
- The shape of the Milky Way

and much more...

E.g., see LISA Astrophysics Living Review, Amaro-Seoane et al. 2023

What is the next BIG idea?

Unveiling the Gravitational Universe at µ-Hz Frequencies

THE MISSING LINK IN GRAVITATIONAL-WAVE ASTRONOMY: Discoveries waiting in the decihertz range

