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White dwarfs

WDs:
Dense star ~ 10%kg/m?

Degenerate e~ pressure
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Plasmon decay o,
Emissivity of plasma: e
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Reglmes 4 2 Cooling
Heavy DP: Fpg ~ 1.50 x 107 (%) —1.66 x 10° (%) et [
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Conclusions

1. We have performed for the first time an ab initio
computation of the WD luminosity due to plasmon decay
into neutrinos in presence of an extra new L, — L, gauge
boson.

2. Given the observation of a hot young WD at the 30% level,
the resulting WD cooling bounds can exclude currently
untested regions of parameter space, where a simultaneous
explanation of the (g —2), and Hp anomaly are still
possible.

3. There is a considerable increase of the BSM effects in the
resonant region 100 eV < mas < 100 keV due to plasma
resonance.

4. A straightforward extension of this work would be to
perform the same calculations for neutron stars. However,
the lack of knowledge of the precise equation of state for
these stars makes it fundamentally more difficult to obtain
robust results for the corresponding luminosities.
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Other limits on A’

>

BBN: At masses below O(10) MeV the dark photon A’
contributes significantly to the heating of the neutrino gas
in the early universe leading to a too large number of
neutrino degrees of freedom, ANyg, during BBN.

NAG64.: by using a missing energy-momentum technique
with a high energy muon beam.

Borexino: from the measurement of the “Be solar neutrino
flux, masses of my ~ 10 MeV are excluded for
gur ~ 0.0005.

BaBar: from resonance searches in four-muon production,
high masses excluded.

COHERENT: from measurements of coherent elastic
neutrino-nucleus scattering (CEvNS) with a Csl[Na] target,
high couplings excluded.

CHARM-II: from the search for neutrino trident
production, for masses ~ 100 MeV.
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