

- Most recent status in Snowmass white paper (March 22): <u>https://arxiv.org/abs/2203.09186</u>
- More details in Project Implementation Plan documents for the European Strategy Update 2018-19.
- Focus on ESPP update ~2026

Status reports and studies

4 CERN Yellow Reports 2018

Details about the accelerator, detector R&D, physics studies for Higgs/top and BSM

Available at: clic.cern/european-strategy

Two formal submissions to the ESPPU 2018

Several Lols have been submitted on behalf of CLIC and CLICdp to the Snowmass process:

- The CLIC accelerator study: Link
- Beam-dynamics focused on very high energies: Link
- The physics potential: Link
- The detector: Link

The CLIC project

O. Brunner^a, P. N. Burrows⁵, S. Calatroni^a, N. Catalan Lasheras^a, R. Corsini^a, G. D'Auria^c, S. Doebert^a, A. Faus-Golfe⁴, A. Grudiev^a, A. Latina^a, T. Leferre^a, G. Memonagle^a, J. Osborne^a, Y. Papaphilippou^a, A. Robson^c, C. Rossi^a, R. Ruber¹, D. Schulte^a, S. Stapnes^a, I. Syratchev^a, W. Weensch^a

^aCERN, Geneva, Switzerland, ⁴John Adams Institute, University of Oxford, United Kingdom, ^aElettra Sincrotrone Trieste, Italy, ⁴JCLab, Orsay, France, ⁴University of Glasgow, United Kingdom, ⁴Upsala University, Sweden

April 4, 2022

Abstract

The Compact Linear Collaber (CLC) in a smith TW high-mainsing linear e^+e^- collider under development by the CLC accentration collaboration, howed by CLENI. The CLC accentration has how equivalent for three energy stages at centre-demass energies 390 GeV, 1.5 TeV and 3 TeV [21]. CLC uses a zowel two-beam acceleration technique, with normal-conducting acceleration grindrage and the collaboration of MV/m to 100 MV/m. The report describes recent adhevements in accelerator design, technology development, systems test and at CLENI Moli at the Accelerator Te to Highly ATZ at AKES [36, 97], at the FACC Heilly at SLAC [36] and at the EERMI facility in Tisset [36]. Crucial experime also emasates from the expanding field of Pre Extern Larger (FLE) insual recent-generation light sources. The Euler, they demonstrate that all implications of the CLC design parameters are well understood and reproducbile in beam tests and prove that the CLC are proved by Aband Myttoms in a diso under study. The implementation of CLC more CRMs has been investigated. Focusing on a staged approach starting at 380 GeV, this includes civil engineering apprets, fall clution particler, single and versition; anticulation scheduling transport, and starty apprets. All CLC atoxies have prevent we put emphasis on optimility or at and engree gefficiency, and the resulting power, and cost estimates are reported particler Provise 10 Hz.

Particle Physics Strategy update 2018-19 (22). Detailed studies of the physics potential contents of the CDLA metric of the theorem of the theorem of the theorem of the physics potential models (CLA) (2014) (201

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

*Compiled and edited by the CLIC Accelerator Steering Group on behalf of the CLIC Accelerator Collaboration, corresponding author: steinar.stapnes@cern.ch

Snowmass white paper: https://arxiv.org/abs/2203.09186

Broadly speaking: "Updated accelerator part of 2018 Summary Report"

Readiness Report around ~2025-26

Update wrt Project Implementation Plan document 2018

Key updates:

- Luminosity numbers, covering beam-dynamics, nanobeam studies and hardware, and positron production at all energies
 - Risk reduction (wrt performance), bumps, redundancies
- Energy/power/sustainability: 380 well underway, 3 TeV to be done, L-band klystrons
- Sustainability issues, more work on running/energy models, carbon (construction/operation/disassembly)
- X-band progress for CLIC, smaller machines, industry availability, including RF network
- RF design optimization/development including injectors, R&D for higher energies, gradient (cool/HTS/etc.), power, beam parameters links to plasma (if it can be made)
- Cost update. Changes wrt to 2018, plus impact of going green.
- Physics "update", use for "diversity" types of physics, LDM etc.
- Low cost/power klystron version, with fewer klystrons, 250 GeV

The Compact Linear Collider (CLIC)

- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- **Expandable:** Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.
- Cost: 5.9 BCHF for 380 GeV
- **Power/Energy:** 110 MW at 380 GeV (~0.6 TWh annually), corresponding to 50% of CERN's energy consumption today
- Comprehensive Detector and Physics studies

Accelerator layout

380 GeV

1. Drive beam accelerated to \sim 2 GeV using conventional klystrons

2. Intensity increased using a series of delay loops and combiner rings

CLIC can easily be extended into the multi-TeV region

- 1. Drive beam accelerated to ~2 GeV using conventional klystrons
- 2. Intensity increased using a series of delay loops and combiner rings
- 3. Drive beam decelerated and produces high-RF
- 4. Feed high-RF to the less intense main beam using waveguides

Extend by extending main linacs, increase drivebeam pulse-length and power, and a second drivebeam to get to 3 TeV

CLIC - Scheme of the Compact Linear Collider (CLIC)

CLIC 380 GeV with X-band klystrons

- Design made, many parts prototyped and available (and used in the smaller linacs mentioned on pages 9-10)
- Need larger tunnel for klystron gallery (CE study also made for this option)
- Also in this case the upgrades would require a drivebeam

- Challenges: number of klystrons a factor 10 higher than in drive-beam version (~5500), lifetime a concern, costs (RF costs per 2m module approaching 1 MCHF)
- Redesign to reduce the klystron challenge fewer, current design not optimized since 2018 ?

ommon modulat 366 kV. 265 A

Load#

Load#2

 $2 \times 68 \text{ MW}$

1.625 usec

 $2 \times 213 \,\mathrm{MW}$

325 ns

Accelerator challenges/technologies

- CLIC baseline a drive-beam based machine with an initial stage at 380 GeV
- Four main challenges
 - 1. High-current drive beam bunched at 12 GHz
 - 2. Power transfer and main-beam acceleration, efficient RF power
 - 3. Towards 100 MV/m gradient in main-beam X-band cavities
 - 4. Alignment and stability ("nano-beams")
- The CTF3 (CLIC Test Facility at CERN) programme addressed all drive-beam production issues
- Other critical technical systems (alignment, damping rings, beam delivery, etc.) addressed via design and/or test-facility demonstrations
- X-band technology developed and verified with prototyping, test-stands, and use in smaller systems and linacs
- Two C-band XFELS (SACLA and SwissFEL the latter particularly relevant) now operational: largescale demonstrations of normal-conducting, high-frequency, low-emittance linacs

Extensive prototyping over the last ~5-10 years

The CLIC accelerator studies are mature:

Optimised design for cost and power

Many tests in CTF3, FELs, lightsources and test-stands

Technical developments of "all" key elements

On-going CLIC studies towards next ESPP update

Project Readiness Report as a step toward a TDR

Assuming ESPP in \sim 2026, Project Approval \sim 2028, Project (tunnel) construction can start in \sim 2030.

Energy consumption \sim 0.6 TWh yearly, CERN is currently (when running at 1.2 TWh.

More work needed on LCA (carbon and other issues).

significantly reduced, recent L-band klystron studies

micro Perveance (uA/V

IE design CERN (PIC simula

CLIC parameters

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim\!\!60/1.5$	$\sim \! 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

 Table 1.1: Key parameters of the CLIC energy stages.

Low emittance generation and preservation

Low emittance damping rings

Preserve by

- Align components (10 μm over 200 m)
- Control/damp vibrations (from ground to accelerator)
- Beam based measurements

 allow to steer beam and optimize positions
- Algorithms for measurements, beam and component optimization, feedbacks
- Experimental tests in existing accelerators of equipment and algorithms (FACET at Stanford, ATF2 at KEK, CTF3, Light-sources)

Figure 8.10: Phosphorous beam profile monitor measurements at the end of the FACET linac, before the dispersion correction, after one iteration step, and after three iteration steps. Iteration zero is before the correction.

Wake-field measurements in FACET

(a) Wakefield plots compared with numerical simulations.(b) Spectrum of measured data versus numerical simulation.

CLIC / Stapnes

Luminosities studies 2019-22

- Luminosity margins and increases
 - Initial estimates of static and dynamic degradations from damping ring to IP gave:
 1.5 x 10³⁴ cm⁻² s⁻¹
 - Simulations give 2.8 on average, and 90% of the machines above 2.3 x 10³⁴ cm⁻² s⁻¹
 - A "perfect" machine will give : $4.3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - In addition: doubling the frequency (50 Hz to 100 Hz) would double the luminosity, at a cost of $\sim\!55\%$ and $\sim\!5\%$ power and cost increase
- Z pole performance, $2.3 \times 10^{32} 0.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - The latter number when accelerator configured for Z running (e.g. early or end of first stage)
- Gamma Gamma spectrum (example)

CLIC CE, stages and schedules

Technology Driven Schedule from start of construction shown above.

A preparation phase of ~5 years is needed before (estimated resource need for this phase is ~4% of overall project costs)

Indicative scenarios of future colliders [considered by ESG]

Proton collider
Electron collider
Muon collider

Construction/Transformation Preparation / R&D

Original from ESG by UB Updated July 25, 2022 by M.Narain (Snowmass summary)

UB

CLIC PIP 2018 – 380 GeV

_ .		Cost [MCHF]		
Domain	Sub-Domain	Drive Beam	Klystron	
	Injectors	175	175	
Main Beam Production	Damping Rings	309	309	
	Beam Transport	409	409	
	Injectors	584	-	
Drive Beam Production	Frequency Multiplication	379	-	
	Beam Transport	76	_	
Main Lines Modules	Main Linac Modules			
Main Linac Modules	Post decelerators	37	-	
Main Linac RF	Main Linac Xband RF	_	2788	
Beam Delivery and Post	Beam Delivery Systems	52	52	
Collision Lines	Final focus Exp. Area	22	22	
	Post-collision lines/dumps	47	47	
Civil Engineering	Civil Engineering	1300	1479	
	Electrical distribution	243	243	
Infrastructure and Comisso	Survey and Alignment	194	147	
Infrastructure and Services	Cooling and ventilation	443	410	
	Transport / installation	38	36	
Machine Control.	Safety system	72	114	
Protection and Safety	Machine Control Infrastructure	146	131	
Protection and Safety	Machine Protection	14	8	
Systems	Access Safety & Control System	23	23	
Total (rounded)		5890	7290	

CE DB "Light" Review performed

Review Areas that may produce a relevant impact on cost:

Civil Engineering
Injectors
Damping Rings
RF (Modulators + Klystrons)
Cooling and Ventilation
Additional Detector (push - pull

Invest 0.3FTE in the development of a more user friendly Interface to the existing Costing Tool ?

First Draft of cost review due by June 2024?

	Cost [EUR]		Cost [CHF]		Cost [CHF]
Civil Engineering Works	2018 PIP Estimate	Inflated PIP Estimate	2018 PIP Estimate	Inflated PIP Estimate	Costing Tool
Underground Structures	667'689'418	767'425'257	754'489'042	748'316'368	804'881'315
Surface Structures	369'011'864	424'132'864	416'983'407	413'571'956	418'420'204
Site Developement	34'383'126	39'519'092	38'852'933	38'535'067	59'196'914
Temporary works	2'398'476	2'756'747	2'710'277	2'688'104	2'848'189
TOTAL	1'073'482'884	1'233'833'960	1'213'035'659	1'203'111'495	1'285'346'621

In 2018 1 EUR = 1.13 CHF 2018 – 2023 CE index= + 15% 2018 – 2023 IPP index= + 2.9% In 2023 1 EUR = 0.9751 CHF

Overview	Timetable		
Timetable			
Registration	< Mon 11/12 Tue 12/12 Wed 13/12 All days >>		
	Print PDF Full screen Detailed view Filter		
CLIC Website	Session legend		
Privacy Information	Project planning - CLIC towards		
CLIC Project Office	30/7-018 - Kjell Johnsen Auditorium		
Clic.project.office@cern.ch	12:00		

13:00

	CLIC project status and mini-week goals CERN	<i>Steinar Stapnes</i> 13:30 - 13:55
14:00	ILC status and plans CERN	Dr Benno List 14:00 - 14:20
	HALHF plans CERN	Brian Foster 14:25 - 14:45
15:00	FCC-ee injector studies CERN	<i>Alexej Grudiev</i> 14:50 - 15:10
	LC physics potential CERN	Aidan Robson 15:15 - 15:35
	Coffee CERN	15:40 - 16:00
16:00	Emittance tuning knobs for CLIC ML CERN	Andrii Pastushenko 16:00 - 16:20
	Power estimats CERN	Alexej Grudiev 16:25 - 16:45
17:00	RTML optimisation CERN	<i>Mr Yongke Zhao</i> 16:50 - 17:10
	Sustainability studies for LC - CLIC and ILC CERN	Steinar Stapnes 17:15 - 17:35
	Highlights from the 2023 HGWS CERN	<i>Walter Wuensch</i> 17:40 - 18:00

×

Yuki Abe

Andrii Pastushenko

Mr Yongke Zhao

Nafiseh Mesbah

13:30 - 15:00

19:00

Summary and thanks

- CLIC studies focused on core technologies, X-band and nanobeam, for next ESPP update well underway.
 - Many common studies with ILC the traditional ones but also recently related to sustainability, also common interactions with C³
 - Keep focus on both 380 GeV and multi-TeV performance and R&D
- Greatly helped by studies of smaller linacs and systems using X-band technology – important for collaboration and industry capabilities
- Thanks to many CLIC accelerator colleagues for slides and input