Linear collider physics potential

CLIC Mini Week, 11 December 2023

Aidan Robson, University of Glasgow

Linear collider physics potential

- Why a linear e+e– Higgs Factory with extension to high energies ?
- Single Higgs
- Higgs pairs
- BSM physics
- Top physics
- ECFA Higgs/top/electroweak factory study

The Higgs Boson and the Universe

Is the Higgs the portal to the Dark Sector? What is Dark Matter made of? • does the Higgs decays "invisibly", i.e. to dark sector particles? • does the Higgs have siblings in the dark (or the visible) sector? What drove cosmic inflation? The Higgs could be first "elementary" scalar we know: What generates the mass pattern in quark and • is it really elementary? lepton sectors? • is it the inflaton? What created the matter-antimatter asymmetry? • even if not - it is the best "prototype" of a elementary scalar we have => study the Higgs What drove electroweak phase transition? properties precisely and look for siblings - and could it play a role in baryogenesis? • Why is the Higgs-fermion interaction so different between the species? • does the Higgs generate all the masses of all fermions? • are the other Higgses involved - or other mass generation mechanisms? • what is the Higgs' special relation to the top quark, making it so heavy? • is there a connection to neutrino mass generation? => study Higgs and top - and search for possible siblings! Does the Higgs sector contain additional CP violation? • in particular in couplings to fermions? • or do its siblings have non-trivial CP properties? => small contributions -> need precise measurements!

- What is the shape of the Higgs potential, and its evolution?
 - do Higgs bosons self-interact?
 - at which strength? => 1st or 2nd order phase transition?
 - => discover and study di-Higgs production

The Higgs Factory mission

- Find out as much as we can about the 125-GeV Higgs
 - Basic properties:
 - total production rate, total width
 - decay rates to known particles
 - invisible decays
 - search for "exotic decays"
 - CP properties of couplings to gauge bosons and fermions
 - self-coupling
 - Is it the only one of its kind, or are there other Higgs (or scalar) bosons?
- ◆ To interpret these Higgs measurements, also need:
 - top quark: mass, Yukawa & electroweak couplings, their CP properties...
 - Z / W bosons: masses, couplings to fermions, triple gauge couplings, incl CP...
- Search for direct production of new particles
 and determine their properties
 - Dark Matter? Dark Sector?
 - Heavy neutrinos?
 - SUSY? Higgsinos?
 - The UNEXPECTED !

 Conditions at e+e- colliders very complementary to LHC;

In particular:

- low backgrounds
- clean events
- triggerless operation (LCs)

The Higgs Factory mission

- Find out as much as we can about the 125-GeV Higgs
 - Basic properties:
 - total production rate, total width
 - decay rates to known particles
 - invisible decays
 - search for "exotic decays"
 - CP properties of couplings to gauge bosons and fermions
 - self-coupling
 - Is it the only one of its kind, or are there **other Higgs (or scalar) bosons**?
- To interpret these Higgs measurements, also need:
 - top quark: mass, Yukawa & electroweak couplings, their CP properties...
 - Z / W bosons: masses, couplings to fermions, triple gauge couplings, incl CP...
- Search for direct production of new particles
 and determine their properties
 - Dark Matter? Dark Sector?
 - Heavy neutrinos?
 - SUSY? Higgsinos?
 - The UNEXPECTED !

 Conditions at e+e- colliders very complementary to LHC;

In particular:

- low backgrounds
- clean events
- triggerless operation (LCs)

Higgs factory contenders (1): Linear Colliders International Linear Collider (ILC) [tp LC. Scenario H20-staged ECM = 250 GeV minosity 3000 ECM = 350 GeV +イハニアック - ECM = 500 GeV 4 ab⁻¹ 2000 2ab-ILC: 250, 350, 500 GeV ; 1 TeV Integrated | 21km / 31km / 40km 1000 Superconducting RF, 35 MVm⁻¹ Sited in Japan TDR 2013, updated for 250GeV European XFEL demonstrates technology ⁰ 5 10 15 20 **Compact Linear** years Integrated luminosity [ab⁻¹] Integrated luminosity drive beam 6 Total Collider (CLIC) 1% peak power-generating structure 1.5 TeV 0.38 TeV 3 TeV 5 ab⁻¹ .5 ab-2.5 ab⁻¹ CLIC: 380 GeV ; 1.5, 3 TeV 11km / 29km / 50km ^{main beam} power Room temperature, 72–100 MVm⁻¹ 2 Sited at CERN CDR 2012, Updated Staging Baseline 2016, power accelerating structure Project Implementation Plan 2018 20 25 5 10 15 0 Similar structures used for Swiss FEL Year Cool Copper Collider (C³) C³: 250, 550 GeV 8km / 8km C³ Beam delivery / IP identical to ILC Operation temperature 77K, 70–120 MVm^{-1} Damping rings / injector similar to CLIC Sited at Fermilab Physics output very similar to ILC Pre-CDR Hybrid Asymmetric Linear Higgs Factory (HALHF) HALHF: 250 GeV (e⁻ 500GeV, e⁺ 31GeV) 3.3km 25 MVm⁻¹ conventional, 6.3GVm⁻¹ plasma Pre-CDR 6

Aidan Robson

Higgs factory contenders (2): Circular Colliders

Higgs factory contenders (1): Linear Colliders International Linear Collider (ILC) <u>[</u>] Scenario H20-staged minosity 3000 ナイハンニアック ECM = 500 GeV 4 ab⁻¹ 2000 2ab ILC: 250, 350, 500 GeV ; 1 TeV 21km / 31km / 40km **Linear colliders:** vears Compa Integrated luminosity [ab⁻¹ high luminosity & power efficiency at high energies Integrated luminosity 6 Total Collider 1% peak 1.5 TeV 0.38 TeV 3 TeV longitudinally spin-polarised beam(s) 5 ab-1 CLIC: 380 G 2.5 ab⁻¹ .5 ab-11km / 29kn Room temp 2 Sited at CER Long-term upgrades: energy extendability CDR 2012, U same technology: by increasing length Project Im 20 5 15 25 0 10 Similar struc or by replacing accelerating structures Year with advanced technologies C³: 2 Cool Copper Collider (C³) 8km - RF cavities with high gradient Oper - plasma acceleration? Sited Pre-Hybrid Asymmetric Linear Higgs Factory (HALHF) HALHF: 250 GeV (e⁻ 500GeV, e⁺ 31GeV) 3.3km 25 MVm⁻¹ conventional, 6.3GVm⁻¹ plasma Pre-CDR Aidan Robson 8

Higgs in e⁺e⁻

Higgs production in e⁺e⁻

Aidan Robson

Aidan Robson

Higgs couplings sensitivity

Illustrative comparison of sensitivities (combined with HL-LHC)

Scale of new decoupled physics

 \mathcal{L}_{SM}

Standard Model

 $\mathcal{L}_{\mathrm{SMEFT}} =$

Dim-6

operators

• some more at ~1%: γ, c

all e+e- colliders show very comparable performance for standard
 Higgs program despite quite different assumed integrated luminosities

Higgs couplings sensitivity

Illustrative comparison of sensitivities (combined with HL-LHC)

- some more at ~1%: γ, c
- all e+e- colliders show very comparable performance for standard
 Higgs program despite quite different assumed integrated luminosities

Standard

 $\mathcal{L}_{\rm SM}$

Scale of new decoupled physics

Model

 $\mathcal{L}_{\mathrm{SMEFT}} =$

Dim-6

operators

Polarisation

why is the performance between projects so similar,
 given the very different integrated luminosities? -> beam polarisation at linear colliders

Background suppression:

Chiral analysis:

- SM: Z and γ differ in couplings to left- and righthanded fermions
- BSM: chiral structure unknown; needs to be determined

Signal enhancement:

- Many processes have strong polarisation dependence, e.g.:
- Higgs production in WW-fusion
- many BSM processes
- => polarisation can give higher S/B

Redundancy & control of systematics:

- 'wrong' polarisation yields 'signal-free' control sample
- flipping positron polarisation can control nuisance effects on observables relying on electron polarisation
- -> ideally want to be able to reverse helicity quickly for both beams

there are many physics benefits from beam polarisation

Aidan Robson

Polarisation

 Higgsstrahlung e+e- -> ZH is the key process at a Higgs factory

 A_{LR} of Higgsstrahlung helps to disentangle different SMEFT operators

[The only SM diagram] Flips sign under spin reversal $e_R \leftrightarrow e_1$

~ c_{WW} Keeps sign under spin reversal $e_R \leftrightarrow e_L$

Constrained by EWPOs

A_{LR} lifts degeneracy between operators

◆ 2 ab⁻¹ polarised ≈ 5 ab⁻¹ unpolarised

=> the reason all e+e- Higgs factories perform so similarly!

Higgs couplings sensitivity

 Aim of precision Higgs measurements is to *discover* violation of the SM

 Complementary to direct searches at LHC – these are examples with large coupling deviations due to new particles that are out of reach of HL-LHC, shown with projected ILC precisions at 500GeV

(Barklow et al. 1708.08912)

 A pattern of well-established deviations can point to a common origin

 Typical models give coupling deviations at 1% level; e+e– factories can reach this sensitivity

Barklow/Peskin

Alternative CLIC run scenario

• To illustrate the flexibility of the runplan: two modifications with respect to the baseline staging:

 Doubling bunch train repetition rate at initial stage from 50Hz to 100 Hz
 -> modest increase in cost and power

Increasing initial stage from 8 to 13
 years
 CERN-ACC-2019-0051

-> Integrated luminosity at 380GeV increases from 1ab⁻¹ to 4ab⁻¹

	Benchmark	HL-LHC	HI 380 (<u>4 ab</u>	L-LHC	C + CLIC 380 <u>(1 ab</u>	-1)	HL-LH 240	C + FCC-ee 365
				+	1500 (2.5a	$ab^{-1})$		
$g_{HZZ}^{\rm eff}$ [%]	SMEFT _{ND}	3.6	0.3	•	0.2	•	0.5	0.3
$g_{HWW}^{\rm eff}$ [%]	SMEFT _{ND}	3.2	0.3	~	0.2		0.5	0.3
$g_{H\gamma\gamma}^{\rm eff}$ [%]	SMEFT _{ND}	3.6	1.3	()	1.3		1.3	1.2
$g_{HZ\gamma}^{\rm eff}$ [%]	SMEFT _{ND}	11.	9.3	$\overline{\bigcirc}$	4.6	$\overline{\bigcirc}$	9.8	9.3
$g_{Hgg}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	2.3	0.9	$\overline{\overline{\mathbf{C}}}$	1.0	σ	1.0	0.8
$g_{Htt}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	3.5	3.1	no	2.2	a	3.1	3.1
g_{Hcc}^{eff} [%]	SMEFT _{ND}	-	2.1	9 D	1.8	Ö	1.4	1.2
$g_{Hbb}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	5.3	0.6	T I	0.4	Ξ.	0.7	0.6
$g_{H\tau\tau}^{\rm eff}$ [%]	SMEFT _{ND}	3.4	1.0	fir	0.9	Ð	0.7	0.6
$g_{H\mu\mu}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	5.5	4.3	st	4.1		4.	3.8
$\delta g_{1Z}[\times 10^2]$	SMEFT _{ND}	0.66	0.027	sta	0.013		0.085	0.036
$\delta \kappa_{\gamma}[\times 10^2]$	SMEFT _{ND}	3.2	0.032	Q	0.044		0.086	0.049
$\lambda_{Z}[\times 10^{2}]$	SMEFT _{ND}	3.2	0.022	(D	0.005		0.1	0.051
			From ar 2001.05	 Xiv: 5278	ا Stra	From European Strategy Briefing Book		
 Either scenario (longer 1st stage, or 								

baseline 1st+2nd stage) is very competitive

We shouldn't forget that 1.5TeV and 3TeV are example benchmarking choices for CLIC – e.g. 500 / 550 GeV (etc) are not ruled out!

Aidan Robson

Higgs self-coupling

• The Higgs self-coupling gives access to the shape of the Higgs potential

Standard Model:

Possible alternative:

In this case, two phases can coexist:

Higgs self-coupling: 0.5–1TeV

 used state-of-the-art reconstruction at the time (2016), but sensitivity very dependent on b-tagging performance, dijet mass resolution -> update is ongoing

Higgs self-coupling: >1TeV

- vvHH dominates at both CLIC TeV stages
- studied in full sim with all processes & beam backgrounds using HH->bbbb /HH->bbWW* (all-hadronic)
- Σb-tag (trained on e⁺e⁻ -> Zvv) used to separate bbbb and bbWW* channels
- main backgrounds: diboson and ZH production
- BDTs trained for 4-jet and 6-jet topologies
- 3.5σ observation, and 28% precision on σ, at 1.4TeV
 7.3% precision on σ at 3TeV (and observation with 700fb⁻¹)
- $\lambda/\lambda_{\rm SM}$ extracted from template fit to binned $M_{\rm HH}$ in bins of BDT response

Higgs self-coupling: >1TeV

• at 1.4TeV rate-only analysis gives relative uncertainties –29% and +67% around SM value of $g_{\rm HHH}$

- 3TeV differential measurement gives -8% and +11% assuming SM $g_{\rm HHWW}$
- simultaneous measurement of triple and quartic couplings gives constraints below 4% in $g_{\rm HHWW}$ and below 20% in $g_{\rm HHH}$ for large modifications of $g_{\rm HHWW}$

	1.4TeV	3TeV
$\sigma(HHv_e\overline{v}_e)$	$>3\sigma EVIDENCE$ $\frac{\Delta\sigma}{\sigma} = 28\%$	$>5\sigma OBSERVATION$ $\frac{\Delta\sigma}{\sigma} = 7.3\%$
σ(ZHH)	3.3 STIDENCE	2.4σ EVIDENCE
$g_{\rm HHH}/g_{\rm HHH}^{ m SM}$	1.4TeV: –29%, +67% rate-only analysis	1.4 + 3TeV: -8%, +11% differential analysis

Eur. Phys. J. C 80, 1010 (2020)

Higgs self-coupling: non-SM case (0.5–1TeV)

Most interesting case is when λ does NOT take SM value
 -> examine behaviour of production mechanisms

Higgs self-coupling: non-SM case (0.5–1TeV)

• Full simulation results from $\sqrt{s}=500$ GeV and 1TeV extrapolated, accounting for total cross-sections and interference contributions

• -> converted into precision on λ at highly enhanced or suppressed values

82 / 2 [%]

10²

10

Owing to their different behaviours, combining ZHH and vvHH gives a measurement of λ at the level of 10–15% for any value of λ

- e.g. 2HDM models where fermions couple to only one Higgs doublet allow
- $0.5 \leq \lambda/\lambda_{SM} \leq 1.5$, while EWK baryogenesis typically requires $1.5 \leq \lambda/\lambda_{SM} \leq 2.5$

Aidan Robson

BSM Models: Higgs + heavy singlet

Direct search for real scalar singlet ϕ :

BSM Models: Higgs + heavy singlet

Direct search for real scalar singlet ϕ :

BSM Models: Baryogenesis

BSM direct searches

Examples

Searching for simplified model dark matter scalar mediator using mono-photon signature *e* -> higher mass reach

Higgsino:

With other superpartners decoupled: χ^{\pm} slightly heavier than χ^{0} ; $\chi^{\pm} \rightarrow \pi^{\pm}\chi^{0}$ leaving 'disappearing track' signature

Top-quark physics

CLIC is unique among e+e- colliders by accessing top-quark physics from the initial energy stage

Threshold scan:

Electron beam polarisation provides new observables

Top-quark physics at CLIC: JHEP11 (2019) 003

- Pair production:
- Top cross-sections, both polarisations ~1%
- Top forward-backward asymmetries ~3-4%
- Statistically optimal observables for top EWK couplings; more than one energy stage allows global fit

 ${}^{0.00033}_{0.001} \ C_{lq,B}$ ${}^{0.00022}_{0.00075} C_{lq,W}$ ${}^{0.00018}_{0.00054} \ C_{lt,B}$ ${}^{0.0076}_{0.011} C_{tB}$ ${}^{0.011}_{0.016} \ C_{tW}$ $^{0.059}_{0.076}~C^{-}_{arphi q}$ ${}^{0.061}_{0.083} \ C_{arphi t}$

Aidan Robson

Beyond Collider Physics

• Considering full use of the infrastructure associated with a linear collider complex

ECFA study

ECFA Study on Higgs/top/electroweak factories

 Study mandated by ECFA to respond coherently to the European Strategy's statement on the highest-priority next collider – working together cross-project

ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather. **ECFA supports a series of workshops** with the aim to **share challenges and expertise**, to explore synergies in their efforts and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).

Goal: bring the entire e⁺e⁻ Higgs factory effort together, foster cooperation across various projects; collaborative research programmes are to emerge

- –> Build on previous coherent efforts
 e.g. Higgs@FutureColliders working group
 for last European Strategy Update
- Structure of the study:

Activities organised via three Working Groups Two major workshops so far

ECFA Report as input to next European Strategy

n of the European Strateay for Particle Physics

ECFA Study on Higgs/top/electroweak factories

Major element of 2023 workshop: converging on definition of 14 *Focus Topics*

Focus topics are intended to encompass a wide range of activities spanning theory & experiment, analysis & algorithm development, and detector requirements & optimisation

- Overall aim: accumulate critical mass working on each topic, reaching publications on timescale of ECFA study

 trying to attract newcomers to work on e+e- physics & detectors
- HtoSS: $e^+e^- o Zh$: h o ss
- ZHang: ZH angular distributions and CP studies
- Hself: Determination of the Higgs self-coupling
- Wmass: Mass and width of the W boson
- WWdiff: Full studies of WW and evW
- TTthresh: Top threshold detector-level studies of $e^+e^- o tar{t}$
- LUMI: Precision luminosity measurement
- EXscalar: New exotic scalars
- LLPs: Long-lived particles
- EXtt: Exotic top decays
- CKMWW: CKM matrix elements with on-shell and boosted W decays
- BKtautau: $B^0 o K^{0*} au^+ au^-$
- TwoF: EW precision 2-fermion final states
- BCfrag/Gsplit: Measurement of b- and c-fragmentation functions and hadronisation rates and measurement of gluon splitting to bb / cc

Focus topics definition/discussion document will appear on arXiv in around 1 week.

https://indico.cern.ch/event/1044297/

Summary

Linear Colliders vision

- ILC and CLIC are mature options for a Higgs factory;
 C³ and HALHF could be interesting alternatives
- Initial stage Higgs factory; upgradable to TeV-energies

 Beam polarization; direct double-Higgs production for
 Higgs self-coupling; interesting access to BSM signatures
- Global programme flexibility with a LC:
 - Starting from initial Linear Collider: can be followed by energy increases and/or independent muon and/or hadron machines with radius and magnets to be determined.

Can also overlap in time with hadron/muon machines.

In the longer future: the civil infrastructure can be used with novel acceleration techniques e.g. plasma

"Diversity programme" using injectors, single beams, "long range" effects for axion searches / LLPs etc (much more to explore) The LC "vision" is a balanced programme over the next 20-30 years for:

- a Higgs factory as soon as possible, upgradable
- R&D for the machine beyond, no constraints imposed by the LC
- a strong diversified programme using the LC complex
- complementary to and succeeding HL-LHC

Thanks to many colleagues for discussion/material

In particular Jenny List, Junping Tian, Michael Peskin, Philipp Roloff, Roberto Franceschini

