

A Compact Inverse-Compton Scattering Source Based on X-band Technology and Cavity-Enhanced High-Average-Power Ultrafast Lasers

Andrea Latina, V. Muşat, R. Corsini, L.A. Dyks, E. Granados, A. Grudiev, S. Stapnes, P. Wang,W. Wuensch (CERN, Geneva, Switzerland), E. Cormier, G. Santarelli (LP2N, Talence, France)

CLIC mini week, December 2023, CERN

Contents

X-ray sources

- Storage-ring and Linac based
- Inverse-Compton Scattering Sources

Key technologies

- X-band high-gradient acceleration
- Fabry-Pérot resonator in burst mode

Proposed setup

- Parameters
- Beam dynamics

Estimated performance

Storage-ring-based X-ray sources

Storage rings X-ray sources offer high fluxes and large energy ranges, e.g. ESRF, Grenoble

Typical X-ray energies are from 5 to 60 keV.

Research with X-ray radiation focuses on fields as diverse as protein crystallography, earth science, palaeontology, materials science, chemistry and physics.

Energy	[GeV]	6.03
Maximum Current	[mA]	200
Horizontal emittance	[nm]	4
Vertical emittance		
(*minimum achieved)	[nm]	0.025 (0.010*)
Coupling (*minimum achieved)	[%]	0.6 (0.25*)
Revolution frequency	[kHz]	355
Number of bunches		1 to 992
Time between bunches	[ns]	2816 to 2.82

Circumference length 844 m

Undulator

A. Latina | Compact ICS

Linac-based X-ray sources: FEL

Free-Electron Lasers: e.g., SwissFEL

Main parameters	
Wave length	1A -50Å
Photon energy	0.25-12 keV
Pulse duration	1fs - 20fs
e Energy	5.8 GeV
e Bunch charge	10 - 200 pC
Repetition rate	100 Hz

FELs feature extremely high brilliance.

Storage-ring-based ICS sources

ICS = Inverse Compton Scattering (or Compton backscattering)

Photocathode Illuminator CouplingMirror Interaction Region Mode-locked IR Laser matched to ring cycle frequency (~ 65 MHz)

Key subsystems:

- Short linac
- Compact storage ring
- Fabry-Pérot enhancement cavity in continuous-wave operation

X-ray energy:

- 15 35 keV (Munich CLS, ~35 MeV e⁻ beam)
- 45 90 keV (ThomX, 50 MeV e beam)

More compact than Synchrotrons and FELs, but still quite complex to operate

Munich CLS

Inverse Compton scattering

= The conversion of a low energy photon from an EM field to a high-energy photon (X-ray or gamma ray) during the interaction (scattering) with a charged particle.

$$N_{\gamma} = \sigma_{c} \frac{N_{e} N_{laser} \cos(\phi/2)}{2\pi \sigma_{\gamma,y} \sqrt{\sigma_{\gamma,x}^{2} \cos^{2}(\phi/2) + \sigma_{\gamma,z}^{2} \sin^{2}(\phi/2)}} \qquad \qquad \mathcal{B} = \frac{\mathcal{F}}{4\pi^{2} \sigma_{\gamma,x} \sqrt{\epsilon_{x}/\beta_{x}} \sigma_{\gamma,y} \sqrt{\epsilon_{y}/\beta_{y}}} \\ \mathbf{Total flux} \qquad \qquad \mathbf{Average brilliance} \\ \frac{\sigma_{E_{\gamma}}}{E_{\gamma}} = \sqrt{\left(\frac{\sigma_{E_{\theta}}}{E_{\theta}}\right)^{2} + \left(2\frac{\sigma_{E_{e}}}{E_{e}}\right)^{2} + \left(\frac{\sigma_{E_{laser}}}{E_{laser}}\right)^{2} + \left(\frac{\sigma_{E_{e}}}{E_{\epsilon}}\right)^{2}} \\ \mathbf{Photon bandwidth} \qquad \qquad \mathbf{B} = \frac{\mathcal{F}}{4\pi^{2} \sigma_{\gamma,x} \sqrt{\epsilon_{x}/\beta_{x}} \sigma_{\gamma,y} \sqrt{\epsilon_{y}/\beta_{y}}} \\ \mathbf{E}_{X-ray} = 2\gamma^{2} E_{laser} \frac{1 + \cos \phi}{1 + \gamma^{2} \theta^{2}} \\ \mathbf{Photon energy} \end{cases}$$

[Slide by V. Musat]

6

 $1 + \cos \phi$

Linac-based ICS sources: extreme compactness

ICS = Inverse Compton Scattering (or Compton backscattering)

HPCI-ICS

HPCI: High-brilliance, compact X-ray sources

- Photoinjector -> high-brilliance
- X-band acceleration -> compactness, high flux, and high energy
- Fabry-Pérot -> high-flux
- Potential to generate soft X-rays up to gammas (~MeV)

Significantly more compact than FELs and Synchrotrons.

 $E_{\text{X-ray}} = 2\gamma^2 E_{\text{laser}} \frac{1 + \cos\phi}{1 + \gamma^2 \theta^2}$

$$N_{\gamma} = \sigma_{\rm c} \frac{N_{\rm e} N_{\rm laser} \cos(\phi/2)}{2\pi \sigma_{\gamma,y} \sqrt{\sigma_{\gamma,x}^2 \cos^2(\phi/2) + \sigma_{\gamma,z}^2 \sin^2(\phi/2)}}$$

A. Latina | Compact ICS

Enabling technology: X-band acceleration

CLIC design study

- Very high-accelerating gradient to make compact facility - 100 MV/m accelerating gradient - 12 GHz - normal conducting
- Efficiency a design goal from the beginning

1m long accelerator structure is sufficient for generating up to ~100 keV monochromatic X-ray beams

Enabling technology: burst-mode Fabry-Pérot

N_p Input \mathcal{E}_{c} laser beam energy (arb. units) time (arb. units) N_0 Circulating laser beam \mathcal{E}_{tot} energy (arb. units) N_p N_0 $N_0 + N_e - 1$ Electron beam time (arb. units) charge (arb. units) time (arb. units) Ň.

The burst mode operation of a Fabry-Perot cavity:

- 1. Has a temporal pattern of the laser pulses like the incoming electron train.
- 2. The effective gain is 2 to 3 orders of magnitude larger than the continuous wave mode.
- 3. Due to the lower intracavity average power, thermal effects on the cavity mirrors are minimised

FPC	Value	Unit
Micropulse energy	10	μJ
Effective gain	264	-
Macropulse energy	22.9	mJ
ε _{tot}	6	J

See V. Muşat, FLS2023, TU1C1

Key parameters of the HPCI–ICS source

Electron beam	Value	Unit
Energy	240	MeV
Single-bunch charge	100	рС
Repetition rate	100	Hz
Nb. of bunches per train	1000	
Bunch length	< 300	µm/c
Bunch spacing	1/3	ns
Norm. transverse emittance	< 3	mm.mrad
Final bunch energy spread	0.3	%

ICS Laser beam	Value	Unit
Wavelength	515	nm
Pulse energy	10	μJ
Pulse length	1.2	ps
Crossing angle	2	deg

Photoinjector

Photoinjector	Value	Unit
Gradient at cathode	90	MV/m
Frequency	3	GHz
Cathode	Cs ₂ Te	
Laser	UV	
Bunch charge	100	рС
Energy	6.5	MeV
Norm. transverse emittance	< 4	mm.mrad
Total length	1.3	m

S-band gun. Similar to the photoinjector of the CLEAR facility at CERN

100 Hz

1/3 ns

RF Photoinjector

X-band linac

X-band linac	Value	Unit
Frequency	12	GHz
Phase advance	2π/3	rad
Average loaded gradient	35	MV/m
Average iris aperture radius	3.8	mm
Structure length	0.5	nm
HOM damping	yes	-
Energy gain per module	~80	MeV

Beam delivery IP

1 Klystron + 1 Pulse compressor can feed up to 8 structures.

It's a wakefield-dominated linac.

X-band => small iris apertures => strong wakefields

CLIC high current beam stability

High-current beam requires Higher-Order-Mode suppression for beam stability, just like CLIC

Transverse long-range Wakefield in

CLIC-G structure

Structure name	CLIG-G TD26cc
Work frequency	11.994GHz
Cell	26 regular cells+ 2 couplers
Length (active)	230mm
Iris aperture	2.35mm - 3.15mm

transverse long-range wakefield calculation using Gdfidl code:

Peak value : 250 V/pC/m/mm At position of second bunch (0.15m): 5~6 V/pC/m/mm

Beam dynamic requirement: < 6.6 V/pC/m/mm

https://doi.org/10.1103/PhysRevAccelBeams.19.011001

0.08

0.1

0.12

0.14

810.16

Electron beam dynamics

RF-Track simulation

Single-bunch jitter amplification

Photon performance

RF-Track simulation

1.5

CERN

Photon performance

Outcoming photons	Value	Unit
Compton edge	2.1	MeV
Total flux	2.2 x 10 ¹³	ph/s
Bandwidth (0.5 mrad)	2.0	%
Flux (0.5 mrad)	1.6 x 10 ¹²	ph/s
Average Brilliance	4.4 x 10 ¹³	(*)
Peak Brilliance	3.9 x 10 ²³	(*)

^(*) ph / (s mm² mrad² 0.1% BW)

Landscape of light sources

CompactLight CDR, https://doi.org/10.5281/zenodo.6375645

CLIC mini week 2023

Conclusions

We presented an advanced conceptual design of a **compact ICS source**:

- S-band photoinjector
- High-gradient multi-bunch **X-band acceleration**
- Fabry-Pérot cavity operating in burst mode

Realistic start-to-end simulations were performed, showing that the HPCI-ICS source has the potential to produce 2 MeV gamma rays with a **total flux of 2.2 x 10¹³ ph/s in less than 15 meters** in length. It's one of the most compact, high energy and high flux sources in the landscape of existing and planned ICS sources.

MeV energy range gamma rays can have applications in various fields: material science, medicine, nuclear physics research, homeland security by nuclear resonance fluorescence inspection, and non-destructive testing of industrial materials.

