The LDG RF Activities

Giovanni Bisoffi, INFN

CLIC Mini Week, CERN

December 12,2023

"(...) cornerstone of Europe's decision-making process for the long-term future of the field. Mandated by the CERN Council, it is formed through a broad consultation of the grass-roots particle physics community (...) and it is developed in close coordination with similar processes in the US and Japan (...)"

Update 30 May 2013

Update 19 June 2020

European Strategy Group

✓ Chairperson

- ✓ 1/CERN Member State,
- ✓ 1/lab of the major European Laboratory Directors' Group, LDG
- ✓ CERN Director-General,
- ✓ SPC Chairperson,
- ✓ ECFA Chairperson.

Invitees:

- ✓ President of the CERN Council,
- ✓ 1/Associate Member States,
- ✓ 1/Observer State,
- ✓ 1/European Commission, JINR
- ✓ Chairs of ApPEC, FALC, ESFRI, and NuPECC
- Members of Physics Prep Group

European Laboratory Directors Group (LDG)

Lab representatives from NIKHEF, INFN, STFC, CIEMAT, CERN, DESY, RAL, CNRS, PSI Standing observers: ECFA Chair, SPC Chair, CERN Directorate

- ✓ Dialogue among Lab Directors and CERN
- ✓ Input to the ESPP, liaise with EU Commission and national funding agencies, institutes and universities
- ✓ Maximise national benefits of investment in fundamental research and in CERN
- ✓ Look at activities outside CERN's Member States, and of other groups in PP and related fields
- ✓ Draw up and maintain a prioritised accelerator R&D roadmap towards future large-scale facilities for PP
- ✓ Coordinate the accelerator R&D activities on the roadmap, until the next SU

Approved R&D strategy and its implementation

https://doi.org/10.23731/CYRM-2022-001

UROPEAN STRATEGY FOR PARTICLE PHYSIC

Accelerator R&D Roadmag

Accelerator R&D Roadmap presented to SPC in March 2022 and adopted by the Council
✓ Each technology area deeply surveyed
✓ Key R&D objectives, deliverables (at 5 and 10 years)
✓ Resource estimates, needed facilities

✓ Emphasis on: e+e- programme and sustainability

After that: **expert coordination panels**, working with LDG ("extended LDG") and accelerator R&D community to begin **implementation of roadmap recommendations**

Lab representatives from NIKHEF, INFN, STFC, CIEMAT, CERN, DESY, RAL, CNRS, CEA, PSI - Standing observers: ECFA Chair, SPC Chair, CERN Directorate Extended LDG members: on HF-Magnets, Muon C, ERL, Laser Plasma Acc, RF

LDG and the and Acc R&D Coordination panels

1. High Field Magnets

- HFM Key for new colliders, beyond the LHC
- Goals (on conductor and magnets):
- ✓ 16 T Nb3Sn technology (large-scale, industryoptimised) for FCC-hh, demonstration before 2026
- ✓ 20 T at 10÷20K with HTS (proof-of-principle, tapes and cables with industry)
- Decades needed, broad expertise and coordination, infrastructures, industry: CARE, EUCARD, EUCARD2, ARIES, now I-FAST, CERN-High Field Magnet and US-MDP
- Cross-cutting activities: materials, powering and protection, infrastructures and instruments, quench detection and protection
- New infrastructures needed!

12 T prototypes expected in INFN-Ge and CERN by 2025; CEA: a 16 T prototype plan

Focus on stress/strain sensitivity and degradation of Nb_3Sn : mech. strength, higher J_C , stressadapted magnet design

Hybrid LTS/HTS magnets: ReBCO tapes or Bi-2212 cables (still a long way to go for 16 T)

Panel chairs: P. Vedrine, M. Lamont

2. Muon Collider

5 GeV p $\rightarrow \pi \rightarrow \mu$, cooled and accelerated at 3/10 TeV

 $3/10 \text{ TeV } \mu$ acceleration via RLA/FFAG and RCS (with 14 T Magnets)

For long-term sustainability of collider physics: strong suppression of synchrotron radiation (μ vs. e) power consumption at 10 TeV lower than CLIC at 3 TeV;
 ∠/P_{beam} increasing with collision energy

After the target: 200 mm bore 15÷20 T solenoid (synergy with fusion)

Cooling channel demonstrator is key:

HG room-T cavity in high-field SC solenoid

• Needed: a fully integrated design (on target, detector, cooling and accelerator chain)

- Needed from RF technology: e.g. HG room-T cavity in highfield SC solenoid, 20 T solenoids (HFM), ERL linac
- MuCol Collaboration: 32 partners Institutions in Europe, plus USA (waiting for P5), China, India: 7-15 M€ thus far

• After 2026, CDR R&D with a μ-cooling demonstrator Panel chairs: S. Stapnes, D. Schulte

3. Colliders based on Energy Recovery Linacs

- Multipass accel/decel (energy efficient)
- «Linac» beam quality, «ring» high I_{ave}
- ERL-based colliders: LHeC, FCC-eh, CERC, ERLC
- Current facilities: S-DALINAC (Darmstadt), MESA (Mainz), CBETA (Cornell, US), cERL (KEK), Recuperator facility (BINP)
- New ERLs: Berlin-PRO, PERLE, CEBAF5, ERLecool at EIC
- Collaboration: iSAS project approved (July 10, 2023): 1000 person*months, 12.6 M€, 4 years
- Needed from SRF technology. Q~10¹¹ at higher T (4K); HOM extraction at high-T; FE-FRT to control transient beam loading and microphonics; dual-axis cavities; ...

Energy Recovery Linear Collider

Panel chairs: J. D'Hondt, M. Klein

4. High-gradient plasma and laser accelerators

Electron bunch or **laser** (v~c) induce wave-like separations of electrons from ions (~ at rest)

Experimental studies on key R&D: e+ bunch acceleration, sufficient bunch charge, nm-scale emittance, staging of multiple structures, spinpolarisation preservation, high rep-rate and power handling, high rep-rate lasers, energy efficiency.

Pre-CDR and Collider Feasibility Report (2025), CDR in 2026-2030 with demo of technical parameters.

Driving discipline is photon/material science: ELI and EuPRAXIA distributed facilities. R&D strategies at CERN (AWAKE), CLARA, CNRS, DESY, Helmoltz's, INFN, RAL, and abroad. HEP-related programmes: EU (EuroNNAc), the US (DOE) and world-wide (ALEGRO).

A collider option beyond 2050 (after FCC-hh)

HALHF, with both RF and PBA: e- 500GeV electrons onto e+ 31GeV positrons

Panel chairs: W. Leemans, R. Patahill

RF = increase beam energy efficiently and reliably

RF Panel coordination		G. Bisoffi INFN-I, P. McIntosh STFC-UK		
wG1	Bulk Nb	M. Baylac CNRS-F, C. Madec CEA-F, L. Monaco INFN-I		
WG2	Thin films	C. Antoine CEA-F, O. Malyshev STFC-UK		
∕ wc3	Couplers	F. Gerick CERN, E. Montesinos CERN, A. Neumann HZB-D		
WG4	NC High gradient	W. Wünsch CERN, D. Alesini INFN-I		
WG5	RF Power sources	I. Syratchev CERN, G. Burt STFC-UK, M. Jensen ESS-S		
∕>wc6	LLRF, AI, ML	Z. Geng PSI-CH, W. Cichalewski U-Lodz-P		

GOAL

Per year: 10 M€, 90 FTE (nominal, ~30% higher than actual - ref. Accelerator R&D strategy)

SRF Cavities: reduce operational cost ($Q_0 \uparrow$) and capital cost ($E_{acc} \uparrow$)

Higher E_{acc}

ILC – higher $E_{acc} \Rightarrow$ smaller linac (= lower capital cost)

- **MC** quick acceleration (vs μ -lifetime)
- **FCC fewer cavities** ⇒ smaller RF installation

Higher Q₀

FCC, ERL, ILC – lower RF losses, cryogenic power minimised. Others: Reproducibility, cost, industrial manufacturing Cavity types – mostly elliptical: 1.3 GHz (3.9 GHz), 802 MHz (401 MHz), 704 MHz (352 MHz), 650 MHz (325 MHz).

(mature)

Niobium ($T_c=9.2K$, $T_{cryo}=2K$ is mandatory) $E_{acc} > 40 \text{ MV/m}$, $Q_0 > 10^{10}$ Theoretical limits close? $\leq 57 \text{ MV/m s.h.}$

(R&D goal)

Thin films (higher-T_c materials) $E_{acc} \times 2$ higher than Nb ($\leq 100 \text{ MV/m}$); Q₀>10¹⁰ at T_{cryo}=4.2K (66% saving in P_{ele,cryo}) – 40% cryo-plant cost saving (cryocoolers?))

WG1 –Bulk Nb Cavities M. Baylac (IJCLab), C. Madec (CEA) and L. Monaco (INFN)

WG2 – Thin film Cavities C. Antoine (CEA) and O. Malyshev (STFC)

1. Further increase **Q** and E_{acc}: surface polishing, treatment (N doping), low/mid/2-step baking, H degas).

2. Improve **reproducibility** of high-E_{acc}

fields: robots in clean room, in-situ plasma processing.

- 3. Reduce the **cost:** Fine \rightarrow Medium Grain
- 4. Risk of losing **manufacturing** capability?
- Maintain SRF technology skills in both labs & industry.
- Invest in industrial processes (FCC ~1000 cavities, ILC -8000 cavities).

CERN (CH), CEA and IJCLab (F), DESY, HZB, Hamburg-Uni (D), INFN (LASA, LNF, LNL), STFC (UK)

A15 materials: Nb₃Sn-on-Nb (USA). Nb₃Sn-on-Cu (IFAST EU project, on going) SIS (multi-layer): higher performance, less defect-sensitive (sample \rightarrow cavity, CEA). Cu cavity base production R&D: spinning (CERN, INFN), 3D-printing; Cu-surface preparation.

CEA-Saclay, CERN, HZB, HZDR, INFN, STFC, USI, Hamburg U. (DESY), (I.FAST-WP) JLAB, KeK and FNAL

WG3: Fundamental Power Couplers (FPC) and HOM F. Gerigk (CERN), A, Neumann (HZB) and E. Montesinos (CERN)

1. Ceramic window! No leak allowed vs. cavity and entire machine, low losses at operating f and T, but brazed, low T-gradient

Transmitting **hundreds of kW (W's** in the cold mass) reliably **through thin ceramic windows** (diameter ~ 5÷ 50 cm) **into SRF cavities**.

FCCee (Z \rightarrow W,H \rightarrow ttb modes): 112 \rightarrow 864 couplers, CW, 400-800 MHz, P = 165 - 900 kW MC (SC driver, NC RF, SC RCS): 250, 7000, 4500 couplers, dc 0.05% \rightarrow 4%, 325-1300 MHz, P = 100 -4000 kW

(for ILC and CLIC: FP specs achieved)

HOMs couplers (see iSAS proposal): R&D on 800, 1300 MHz multicell; ~ kW RF power out of the cold mass

FABRICATION CAPABILITIES, TEST STAND

CERN: for future colliders, long-term expertise; couplers for Soleil, ESRF, PERLE, ... - CEA: couplers on request for XFEL, ESS DESY: 1.3 GHz CW couplers RI company EIC (USA): couplers with challenging specs, developments will benefit next colliders.

WG4: HG Normal-Conducting RF W. Wuensch (CERN) and D. Alesini (INFN)

<u>CLIC</u>

- HG (70 to 100 MV/m), X-Band with very low breakdown rate, key for cost (linac length) and efficiency (BD).
- Good alignment mitigates HG/BD interplay (wakefields).
 Muon Collider
- Muon capture: HG with high external magnetic field.
 FCC-ee 20 GeV NC injector; FCC-hh E-separators (S and C-Band).

Synergic with applications outside HEP (60 - 70 MV/m)

Operational test infrastructures: CERN (n.3, 50 MW, 12 GHz), **Trieste** (45 MW, 3 GHz), **Valencia** (7.5 MW, 3 GHz), **Frascati** (50 MW, 12 GHz), **Uppsala** (cryo pulsed DC sys)

X-band linearizers and deflectors: PSI, DESY, STFC Linac design, operation: INFN (Roma and LNF), CERN, PSI, Eindhoven, Elettra, Medical VHEE, FLASH

- <u>Achieved</u>: Gradient; understanding of fundamentals physics; industry on NC RF components/systems; synergies (XFEL, Eupraxia, ICS, medical, plasma accelerator, RFQ, ...)
- <u>Generated:</u> dielectric structures, short pulse acceleration and HT superconductors.
- <u>Required:</u> systems engineering, integration, mechanics R&D, design, μm-level alignment.
- Fundamentals of breakdown: on materials, plasma, surface physics, ...

WG5: High Efficiency Amplifiers

I. Syratchev (CERN), G. Burt (Lancaster U) and M. Jensen (ESS)

FCCee

- **High efficiency RF power sources** for future largescale particle accelerators (**LHC** and **FCC**_{ee} first)
- In collaboration with industry to secure to ensure decades of industry support.

Only large projects can afford R&D costs and risks, which benefit many applications; for small labs energy savings are not worth R&D investment.

Klystrons (CERN, Lancaster, ESS, CEA): R&D expensive, today done solely with industry (3 qualified vendors!). 50-100% cost increase in last ~5 yrs. SSPA (CERN, Uppsala, CEA Saclay, INFN-Legnaro, NCBJ (Swierk), CIEMAT): industry on transistor (and η) R&D; labs contribute with combination/matching techniques

FCC ee: CW, 0.4/0.8 GHz, P_{RF} total= 110 MW

3.0 TeV CLIC^{e+e-} ; pulsed, 1.0 GHz, P_{RF, total} = **180 MW**

WG6: RF Control – LLRF, ML and Al G. Zheqiao (PSI) and W. Cichalewski (DMCS)

Comprehensive, intelligent, highly automated, and standardised LLRF system is essential for the success of the RF systems of future colliders.

- Accelerator sections with different beam patterns and f_{RF} high-level AI automation/optimisation.
- ILC/FCC/MC SC RF cavities → RF control vs. vibrations and heavy BL
- Lower energy consumption → RF/operation control
- Long construction and operation cycles → optimal architecture and framework suited for long-term standardised HW/SW

RF stability figures achieved! (FEL specs ~ 0.01 % amplitude and 0.01° phase; ILC: 0.07 % and 0.24°); real-time stabilization with Al automation/optimization alogorithms (telecom industry providing high-res fast ADCs and high-performance DSPs.

Availability, reliability and operability (FCC, ILC, MC, ...) with many RF stations & cavities (ILC, > 560 RF stations and 14500 cavities), ML algorithms will decrease operation/maintenance costs.

Standardise LLRF system design and gain long-term industry support to labs (HW/SW platforms like VME, ATCA to MicroTCA, System-on-Chip): it will facilitate in-kind for large scale projects

M. Baylac (CNRS)

ERL/RF Panel collaboration: iSAS project 1000 person*months, 12.6 M€, 4 years (Approved July 10, 2023, Start March 1, 2024):

(WG2-Thin films, WG3-Couplers, WG5-Power Sources, WG6-LLRF, ML and AI)

RF-to-MC link: high E_a in high B

Study of RF breakdown (BD) under strong magnetic fields for muon ionisation cooling

So far (FNAL): 50 MV/m at 3 T

Four test stands being considered:

- ✓ UHF test facility (CEA)
- ✓ Higher frequencies 3 GHz, 12 GHz (INFN, CERN and Cockcroft): smaller, quicker, act as guideline
- ✓ DC field breakdown test stands (CERN, Cockroft, Uppsala): cheaper, compact, short gap

✓ New compact klystrons (with WG5)

MC/RF Panel coordination → survey sent to each institute involved, responses awaited on capabilities and physics targeted by each facility; joint meeting to follow

(WG4-NC High Grad, WG5-Power Sources)

G. Burt (STFC)

Outlook - Progress of the LDG RF Panel

Nov22 – Mar23: watch future collider needs and RF goals

From Apr23:

✓ Outreach (Community Forum-July 2023; special session at HG2023), priorities revised

Apr23 – Oct23:

✓ Who is doing what/progress on the Roadmap milestones: survey of national teams

✓ Continue coordination with ERL and MC panels

Jan-Jun 24:

✓ Coordinate teams vs priorities, explore funding routes: national and EU

✓ Zoom meeting with RF coordinators in **Snowmass-P5** (February 2024)

✓ **Promote RF developments/needs** towards HEP-physicists and funding agencies

✓ Idea, a superWP on RF in I.FAST2 ← EU funds, national matching funds, more cohesion in the RF community at large

Jul-Dec 24, ... : report on progress in the field and impact of above actions

Spare slides

Outlook - lobbying for more funds

How to address the funding agencies after the survey?

- ✓ Highlight priority areas; identify best lab candidates to address them
- ✓ Elaborate a overall investment proposal
- ✓ Coordinate within the extended-LDG on the overall fund requests to the funding agencies

«IFAST-2»

Initial contacts to develop a super-workpackage clustering several R&D activities in

RF (now in I.FAST: thin films, HE power sources, C-guns, AM).

- ✓ Additional funds for RF by EU
- ✓ National FAs to add matching funds.

 \checkmark It encourages RF coordination across Europe \rightarrow one community

Done:

- Future collider RF needs well focused
- European contributing teams identified, along with available infrastructures; Progress/challenges in RF theme areas followed up

Next:

- The Nov-2023 progress report to the CERN council, as basis for periodic updates
- Correlate needs candidate labs to fulfill them → coordinate (at LDG level) towards national funding agencies
- Elaborate on a super-RF-WP in the "I.FAST2" proposal

European Particle Physics Strategy and its updates

"(...) cornerstone of Europe's decision-making process for the long-term future of the field. Mandated by the CERN Council, it is formed through a broad consultation of the grass-roots particle physics community (...) and it is developed in close coordination with similar processes in the US and Japan (...)"

Update 30 May 2013

Update 19 June 2020

European Strategy Group (ESG)

✓ Chairperson

- ✓ 1/CERN Member State,
- ✓ 1/lab of the major European
 Laboratory Directors' Group, LDG
- ✓ CERN Director-General,
- ✓ SPC Chairperson,
- ✓ ECFA Chairperson.

Invitees:

- ✓ President of the CERN Council,
- ✓ 1/Associate Member States,
- ✓ 1/Observer State,
- ✓ 1/European Commission, JINR
- ✓ Chairs of ApPEC, FALC, ESFRI, and NuPECC
- ✓ Members of Physics Prep Group

European Laboratory Directors Group (LDG)

S. Bentvelsen (NIKHEF)

► F. Bossi (LNF)

► J. Clarke (DL)

N. Colino (CIEMAT)

► F. Gianotti (CERN)

D. Newbold (RAL)

► E. Previtali (LNGS)

► F. Sabatie (IRFU)

► M. Seidel (PSI)

► A. Stocchi (IJCLab)

B. Heinemann (DESY)

Remit by CERN Council:

- $\,\circ\,$ Dialogue among Lab Directors and CERN
- Input to the ESPP, liaise with EU Commission and national funding agencies, institutes and universities
- Maximise national benefits of investment in fundamental research and in CERN
- $\,\circ\,$ Look at activities outside CERN's Member States, and of other groups in PP and related fields
- Draw up and maintain a prioritised accelerator
 R&D roadmap towards future large-scale facilities for PP
- Coordinate the accelerator R&D activities on the roadmap, until the next SU

Standing observers

- ► K. Jakobs (ECFA Chair)
- M. Lamont (CERN Directorate)
- ► J. Mnich (CERN Directorate)
- ► H. Montgomery (SPC Chair)

Secretary

► E. Tsesmelis (CERN)

Extended LDG members

- ► G. Bisoffi (for RF) + P. Macintosh
- ► W. Leemans (for LPA) + R. Patahill
- ► S. Stapnes (**for Muons**) + D. Schulte
- ► J. D'Hondt (for ERL) + M. Klein
- ▶ P. Vedrine (for HFM) + M. Lamont

European Strategy Update and Accel R&D

• What R&D? which priorities?

• How long might it take? How much will it cost?

- Which science with demonstrators, or intermediate-scale facilities?
- Which new infrastructures?

Large-scale accelerator R&D plan to inform and support future decision-making in the field

- 1. HF magnets
- 2. HG RF structures and systems

Key questions during the 2020 Strategy

Update on **R&D for future collider**

options:

- 3. HG plasma and laser accelerators
- 4. Muon colliders,
- 5. Energy Recovery Linacs

Superconducting RF: bulk niobium cavities, surface preparation, thin films

NC structures: fundamental limitations, surface preparation, manufacturing > techniques

High power RF sources, accelerating structures ancillaries (couplers, tuners...), LLRF and AI

Authors of RF R&D strategy:

S. Bousson (IJCLab), Hans Weise (DESY). G. Burt (Lancaster University); G. Devanz (CEA); A. Gallo (INFN LNF); F. Gerigk (CERN); A. Grudiev (CERN); D. Longuevergne (IJCLab); T. Proslier (CEA); R. Ruber (Uppsala University), plus added experts

European Strategy

12/12/2023

European Paricle Physics Strategy Update

 \rightarrow 2020÷2027

CERN Council:

decision making body, coordinating particle physics in Europe (23 Member States)

^(*) Allocated funds (for **3 years**, 2023-2026): **4929 k€**

- 2125 k€ (of which RF: 1730 k€)
- Temporary personnel 552k€ p (of which RF: 288 k€)
- 2252 k€ staff

US Snowmass Implementation Task Force: Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov, S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Shiltsev, J. Straight, M. Turner, L. Wang et al.

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Years to physics	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	13-18	12-18	290
ILC	0.25	2.7	<12	7-12	140
CLIC	0.38	2.3	13-18	7-12	110
ILC	3	6.1	19-24	18-30	400
CLIC	3	5.9	19-24	18-30	550
MC	3	1.8	19-24	7-12	230
MC	10	20	>25	12-18	300
FCC-hh	100	30	>25	30-50	560

Judgement by ITF, take it *cum grano salis*

ERL RF topics

Identified the key aspects for an Energy Recovery accelerator

towards high-energy & high-intensity beams to be used at particle colliders

Extended LDG role

The RF Coordination Panel is one of the Theme Coordination Panels A-E