

1

FREIR

Cryogenic discharge system at FREIA Laboratory Status of high gradient studies at Uppsala

M. Jacewicz, M. Coman, I. Profatilova, FREIA Laboratory, Uppsala University W. Wuensch, S. Calatroni, CERN

CLIC Meeting 2023, 11-13/12/2023

Cryo DC pulsed system

- Focus on fundamental understanding of conditioning process and ultimate limit on accelerating gradient
- Help theoretical models of vacuum breakdown nucleation: strong dependence on temperature
- Behavior of different, NC and SC, materials, and thin-films
- Interest in cryogenic copper applications

Field emission and BDR as a function of temperature

Pressure : ~ 5e-9 mbar (@cryo)

Temperature: flexible down to 4 K.

Electrodes (CERN std): 60 mm diameter cathode 40 mm diameter anode

Gap: 40 or 60 μm at warm, (increasing **at cold**)

High voltage generator:

- Up to 12 kV voltage
- Pulsed DC
- Pulse width 1 µs (up to 1 ms)
- Rep rate: **1 kHz** (up to 6 kHz)

Recent results confirm the previous findings Highly reproducible results from Field Emission (FE) – becoming valuable tool for diagnostics

Hard copper: warm vs cold Electrodes and conditioning history:

Temperature	Gap size	First BD E _{field}	Max E _{field}	Saturated E _{field}	#BDs to max E _{field}
300 K	60 µm	45 MV/m	114 MV/m	90 MV/m	94
30 K	59 µm	140 MV/m	147 MV/m	120 MV/m	7
10 K	59 µm	108 MV/m	135 MV/m	123 MV/m	27

Surface morphology "post-mortem" HiRes optical scan with anode-cathode matching

Atypical BD features cathode surface after high field conditioning at 30K and 10K

FREIR

Courtesy Inna Popov, The Hebrew University of Jerusalem

Star-like features created during cryo test

Found only on cathode

Features on anode similar to regular ones, but "weaker"

Temperature	Nb of BDs	Nb of star-like	Fraction
30K	145	37	26 ±5%
10K	280	149	53 ±7%

Temperature dependence

The data taken at 30K and 10K are at very similar field conditions, giving large confidence in feature comparison

BD sites show therefore clear the temperature dependence:

- Formation of star -- like features and
- their percentage, doubling in number when going from $30K \rightarrow 10K$

Our interpretation:

- Unstable tip ejects molten material in random direction, lands on the cold(er) surface and freezes
- If the melting continues, the regular circle around the crater will form and expand → features created by plasma instabilities will be covered
- In the room temperature experiments we see therefore no star-like traces left
- In cryo temperatures, the heat is dissipated more efficiently, and we can get a glimpse to the first stages of the thermal runaway of the tip

Source: https://www.copper.org/resources/properties/cryogenic/

Nb conditioning at 4K – first run

(preliminary results)

FREIR

Saturation field: 116 MV/m, BDR ~ few 10^{-6}

Room temperature (CERN), saturation field: 84 MV/m

Nb conditioning – first run (preliminary results)

Conditioning accompanied by a regular FE measurments

 $\boldsymbol{\beta}$ and the emitter area are extracted from the data

Typical FE scan data with F-N type fit

Nb conditioning – second run (preliminary results)

Saturation field: 144 MV/m, BDR ~ few 10^{-6}

Nb conditioning Emitting area and field enhancement factor

FREIR

Conditioning curve and the fit parameters from the FE curves (the first measurement immediately after a portion of a conditioning run)

Beta stopped decreasing is a sign that we are towards the end of the conditioning

Nb conditioning Local Electric field

$$E_{BD}^{Local} = \beta E_{BD} \cong 7 \frac{GV}{m}$$

Field emission studies

Temperature dependance

Surface resistivity measurements during high-field conditioning

Main motivation: Test the dislocation hypothesis

How?

Cryogenic environment + DC conditioning + RF resistivity measurement

The electrode system needs to be **modified**:

- Anode: a groove (choke) to contain a resonant mode between electrodes) (idea thanks to J. Paszkiewicz and S. Calatroni)
- Cathode: for better/safer antenna coupling

We have tested a prototype to confirm the concept (at room temperature)

First set in production at CERN We are getting ready for first measurements

BONUS: RF antenna inside the system = new methods of investigating breakdowns.

The temperature "knob" is a great way to further explore the limits on accelerating gradient

Cathode and anode surface morphology \rightarrow may shed light on process that dominates BD formation, e.g. pre-BD phase, instabilities during thermal runaway and initial explosion; <u>simulations needed</u>

Field emission is an invaluable tool for diagnostics of the conditioning process

• Very clean data at cryo, highly reproducible

We aim to fully utilize our setup with further tests and diagnostics:

- Characterization of Nb electrodes with the same methods
- Other materials, Ti electrodes in the pipeline
- Measure changes in surface resistivity during conditioning with microwave method
- ➢ RF antenna as additional tool for BD diagnostics
- Upgraded Marx power supply with build-in FE capabilities
- Regular use of RGA for diagnostics

FREIR

UNIVERSITET

/ FREIR

Thank you for attention