

Beam Loading Studies in Positron Source Capture Linac of Compact Linear Collider (CLIC)

- Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran, Iran.
- European Organization for Nuclear Research (CERN), Geneva, Switzerland.

CLIC mini week December 2023

- Introduction
- Beam Loading effect
- RF-Track and Beam Loading
- Simulation and Results
- Summery

Introduction

- Beam Loading effect
- *** RF-Track and Beam Loading**
- **Simulation and Results**
- **Summery**

- * 2 GHz room temperature, $2\pi/3$ phase advance per cell, traveling-wave accelerating structure
- Structure: 1.5 m long, 2 cm aperture (radius), 20 cm distance, with NC selonoid 0.5 T
- Number of structures: 11 => 1 for deceleration 10 for acceleration
- The captured positrons at the end of the CL reach 200 *M*eV energy.

Introduction

Beam Loading effect

- *** RF-Track and Beam Loading**
- Simulation and Results
- ***** Summery

Cavity Beam Interactions and Beam Loading Effect

- A particle crossing a cavity would be affected by the excited fields in the cavity.
- \diamond care must be taken that there are two sources for exited fields.
- The induced excitation can reduce cavity voltage and hence the Gradient of the structure.
 - lasts for a long time Long range effect
 - Accumulated from bunch-to-bunch

250

Beam induced field (TRANSIENT)

130

Introduction Beam Loading effect RF-Track and Beam Loading Simulation and Results Summery

About RF_Track

- a novel tracking code developed by Andrea Latina
- transport beams of particles
 - solving fully relativistic equations of motion
 - using parallel algorithms
 - written in optimized and parallel C++
 - user interfaces scripting languages
 - Octave
 - \circ Python
- RF-Track has been tested successfully in several cases:
 - TULIP, ELENA ring, the CLIC positron injector, and the AWAKE injector Linac.

Example (Octave interface)

% load RF-Track
RF_Track;

% setup simulation
TL = setup_transferline;
B0 = setup_beam;

% track
B1 = TL.track(B0);

% inquire the phase space T1 = B1.get_phase_space("%x %xp %y %yp");

% plot
plot(T1(:,1), T1(:,2), "*");
xlabel("x [mm]");
ylabel("x' [mrad]");

Beam Loading in RF_Track

- Gradient reduction due to beam-cavity interaction can be understood with the Power-Diffusive model
- Self consistent module: additional decelerating kick attached to Drift spaces, TW and SW structure, field maps
- Compute force while tracking

CERN

%import RF_Track

RF_Track;

%Define Bunch

B = Bunch6d(mass, population, charge, [X XP Y YP T P];)

%Define RF_Structure

load('field.dat.gz');

TW = RF_Field(field.Ex, ... % Efield [V/m] field.Ey, ... field.Ez, ... field.Bx, ... % Bfield [T] field.By, ... field.Bz, ... field.xa(1), ... % x0,y0 [m] field.ya(1), ... field.hx, ... % mesh size [m]

field.hy, ...
field.hz, ...
field.za(end), ... % length [m]
field.frequency, ... % [Hz]
field.direction, ... % +1, -1, 0
field.P_map, ... % [W]
field.P actual);

%BL_effect

BL = BeamLoading(TW, Pactual, VG, QQ, phaseadvance, Bcharge , Bpopulation, fB, BNumber);%Transient

%append BL to TW
TW.add_collective_effect(BL);

%Define Lattice

LS = Lattice(); LS.append(TW);

%Tracking B0 = LS.track(B);

AA = B0.get phase space();

Parameter	Value
Structure frequency	2 GHz
Q- factor	18346
Input power	59.54 MW
Average group velocity	0.0145 c
Filling time	333 ns
Number of bunch per train	312
Bunch spacing	0.5 ns
Population per bunch	7.5e9
Train length	156 ns

Introduction

- Beam Loading effect
- *** RF-Track and Beam Loading**
- Simulation and Results
- ***** Summery

Challenges

- Capture Linac includes both e- e+ with large energy-spread, large-bunch-length, large-emittance
- Structure suffers from both e- and e+ Beam Loading
- Goal: Preserve as many e+ as possible and prepare them for entry into the pre-damping ring for emittance reduction

e- e+ outputs

- \diamond Most of the positrons are lost at the beginning of the pipe => Cooling needs to be addressed.
- Electrons have a phase shift of π degree apart with respect to positrons, moving to the accelerating phase and gaining energy.

Phase Scan

15

✤ The structure can be optimized through different criteria.

Beam Loading results

Gradient reduction for middle bunch n=150

1.2

1.4

CERN

Beam Loading results

Positron phase space with e+ BL with both e+ e- BL w/o BL

	unit	input	output
%Lost		66.11 %	
Eng_Gain/Loss	[MeV]	226.81	
N_particle	[#]	81254	27538
ave-Eng	[MeV]	58	285.09
EngSpread	[MeV]	123.41	47.12
bunch_length	[ns]	0.0322	0.0528
bunch_length	[degree]	23.18	37.99
beamSize-x	[mm]	12.67	7.22
beamSize-y	[mm]	12.70	7.19
emittance-x	[mm.mrad]	9274.20	9336.52
emittance-y	[mm.mrad]	9227.00	9245.70

emittance-y

I				
		unit	input	output
	%Lost		66.58 %	
	Eng_Gain/Loss	[MeV]	198.35	
	N_particle	[#]	81254	27158
	ave-Eng	[MeV]	58	256.49
	EngSpread	[MeV]	123.41	41.79
	bunch_length	[ns]	0.0322	0.0522
	bunch_length	[degree]	23.18	37.60
	beamSize-x	[mm]	12.67	7.27
	beamSize-y	[mm]	12.70	7.15
	emittance-x	[mm.mrad]	9422.29	9326.06

9247.44

9250.02

[mm.mrad]

TW 2-11: accelerating

TW Structure

TW 1: decelerating

ŧ

Solenoid (0.5 T)

2 GHz

unit	input	output
	66.12 %	
[MeV]	219.33	
[#]	81254	27529
[MeV]	58	277.62
[MeV]	123.41	45.88
[ns]	0.0322	0.0560
[degree]	23.18	40.33
[mm]	12.67	7.25
[mm]	12.70	7.22
[mm.mrad]	9315.61	9377.41
[mm.mrad]	9259.78	9271.00
	unit [MeV] [#] [MeV] [MeV] [ns] [degree] [mm] [mm.mrad] [mm.mrad]	unit input 66.12 % [MeV] 219.33 [#] 81254 [MeV] 58 [MeV] 123.41 [ms] 0.0322 [degree] 23.18 [mm] 12.67 [mm] 12.70 [mm.mrad] 9315.61 [mm.mrad] 9259.78

Beam Loading results

↔ $τ_f > τ_{train} ⇒$ transient Beam Loading affects particles.

N-structure

bunch-to-bunch variation

[us]

표 됩 16

unq

N-structure

2.5e+09

2.45e+09

N-structure

N-structure

Beam Loading effect in optimized phase

✤ Beam loading effect on an optimized structure with a focus on achieving maximum yield in the DR entrance.

.

emittance-y

[mm.mrad]

1000

800

600

400

200

e+e- BL	unit	input	output
%Lost		65.41 %	
Eng_Gain/Loss	[MeV]	135.40	
N_particle	[#]	81254	28109
ave-Eng	[MeV]	58	193.44
EngSpread	[MeV]	123.41	49.22
bunch_length	[ns]	0.0322	0.0263
bunch_length	[degree]	23.18	18.92
beamSize-x	[mm]	12.67	7.20
beamSize-y	[mm]	12.70	7.09
emittance-x	[mm.mrad]	9361.31	9351.61
emittance-y	[mm.mrad]	9214.70	9210.40

e+ w/o BL	unit	input	output
%Lost		65.41 %	
Eng_Gain/Loss	[MeV]	138.88	
N_particle	[#]	81254	28107
ave-Eng	[MeV]	58	196.93
EngSpread	[MeV]	123.41	49.86
bunch_length	[ns]	0.0322	0.0262
bunch_length	[degree]	23.18	18.88
beamSize-x	[mm]	12.67	7.19
beamSize-y	[mm]	12.70	7.06
emittance-x	[mm.mrad]	9358.18	9321.17

9210.44

9180.48

- Tracking of electron and positrons in capture Linac of positron source of the CLIC has been performed using RF_Track.
- Beam Loading with respect to presence of both electron and positron has been studied with the aid of Beam Loading simulation module in RF_Track.
- The effect of BL in an optimized structure (based on maximum yield in DR entrance) has been studied.
- studies are still ongoing....
- **OUTLOOK:**
 - Further optimization for finding appropriate phase and gradient in the presence of Beam Loading
 - Further optimization to investigate and compensate bunch to bunch variation

- I would like to express my gratitude to Steffen Doebert and Mohsen Dayyani for giving me this opportunity to work on this project.
- * I am very grateful to Javier Olivares, Yongke Zhao, Andrea Latina for great discussion and help.

Thanks for your attention

