<u>CLIC</u> Mini Workshop

ERN

Catarina Serafim

Study of different materials in high voltage breakdown tests in the DC system, before and after H- low voltage irradiation

Supervisors: Sergio Calatroni, CERN Flyura Djurabekova, University of Helsinki

12th December, 2023 Switzerland

Motivation/Selection of materials

- Finding a new material with a better performance to a future manufacturing of a new RFQ.
- Need to understand origin of enhanced breakdown rate, and find a mitigation
- Can breakdowns be correlated with beam losses ?
- Can blistering influence the lower performance?

Materials were selected based on their:

- Usability for meter-long high gradient RF cavities
- Potential resistance to blistering
- Resistance to breakdown phenomena

Procedure

1st pair of electrodes

Before testing electrodes have been through a preparation phase:

2nd pair of electrodes

Pulsed DC Large Electrode System Setup

- The MARX generator can pulse up to a rep rate of 6kHz.
- Measurements of the voltage and current pulses are done.
- Breakdowns are detected both form the pulse shape and optically.

Breakdown Location

(2019). Breakdown localisation in a pulsed DC electrode system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 953. 10.1016/j.nima.2019.163079.

Irradiation setup – LINAC4 source test stand – Irradiation affects study

In this test stand, specific hardware was developed to use a cathode as the target for irradiation.

Schematic from Alessandra Lombardi

<u>Irradiation setup – LINAC4 source test stand – Irradiation affects study</u>

Low Energy H- beam	45 keV
Duration	40 hours
Pulse duration	600 µs
Repetition Rate	0.83 Hz
Peak current	20 mA
Deposition of particles	1.2x 10^19
on the target	H⁻p/cm²

Schematic from Alessandra Lombardi

Pictures of each electrode from each material after irradiation testing.

Pictures of each electrode from each material after irradiation testing.

Irradiated Cu cathode

SEM observations in different areas surrounding the irradiation zone

Irradiated Cu cathode

SEM observations in different areas surrounding the irradiation zone

Irradiated Cu cathode, 2021

SS316 electrode non-irradiated

CuBe2 electrodes (non-irradiated and LES tested)

Optical Microscope

Maximum field: 110 MV/m Stable field: 90 MV/m

2mm

<u>CuBe2 cathode – irradiated</u>

Dismounting of CuBe cathode after irradiation

Optical imaging of the surface using lens 80x.

CuBe2 cathode irradiated after LES

testing

CuBe irradiated + LES

EN

Irradiated cathode, submitted to high pulsing test.

Similar to previous irradiations, we have observed a carbon content inside the irradiated zone. In the irradiated zone, exfoliation of this carbon layer was observed (white spots).

Chemical analysis

Electron Image 4

50µm

Spectrum 6			Spectrum 7		Spectrum 8			
Element	Line Type	Wt%	Element	Line Type	Wt%	Element	Line Type	Wt%
С	K series	1.25	С	K series	1.15	С	K series	8.86
Cu	L series	98.75	Cu	L series	98.85	Cu	L series	91.14

Spectrum 4			Spectrum 5		
Element	Line Type	Wt%	Element	Line Type	Wt%
С	K series	1.38	С	K series	11.04
Cu	L series	98.62	Cu	L series	88.96 28

We have observed that the breakdowns are only concentrated inside the exfoliated zones.

The zones without those exfoliations, i.e. with a protective carbon layer, are free from breakdowns, even in the zones with high density of blisters.

Zone with a higher density of blisters. The blisters have no influence on the triggering of breakdowns.

Is the carbon preventing the electrodes from reaching a high field?

Plan for Plasma cleaning treatment + Repeat LES testing

Data from a Cu sample previously analyzed after being exposed to irradiation (same parameters as the electrodes) As we approach de irradiation zone we see an increase of the thickness of the C with a factor of aprox.2 Cu layer aprox. 56 nm

Plasma cleaning of H- irradiated CuBe cathode and reference Cu sample irradiated

System in 181

viewport

Before O₂ plasma cleaning

Plasma treatment parameters

Plasma source: ibss alumina tube 300W prototype, $\varphi = 0.147$ in p = 4E-3 mbar, pure oxygen (pressure)

 $P_{rf} = 50 W$ (pl.source rf power)

L = 610 mm ± 10 mm (distance samples - plasma source); $D_{ch} = 100 \text{ mm}$

a-C dth/dt in these conditions = 0.015 nm/s (removal rate) Plasma ion energy in these conditions : 35 eV (measured by RFEA)

Treatment duration = 1h 15 min (nominally 68 nm of a-C)

After plasma cleaning

CuBe2 Breakdown Test

The followings plots are from the same set of electrodes.

- On the left before plasma treatment
- On the right after plasma treatment

General Conclusions of the study

Material	Max E-Field (MV/m)	Pair of electrodes	Blistering from Irradiation
Cu OFE	80	Non-irradiated pair, 2023	х
	25	Irradiated pair	Yes
TiAl6V4	110	Non-Irradiated pair	x
	95	Irradiated pair	No
CuBe2	110	Non-irradiated pair	х
	45	Irradiated pair	Yes
SS316	120	Non-irradiated pair	х
	65	Irradiated pair	No
CuCrZr	85	Non-Irradiated pair	x
	29	Irradiated pair	Yes
Nb	94	Non-Irradiated pair	х
	42	Irradiated pair	No
Та	60	Non-Irradiated pair	X
	38	Irradiated pair	No

Results of conditioning test using high voltage pulsing

- ✓ For the non-irradiated electrodes breakdowns have shown to be dispersed throughout all the surface.
- ✓ Cu-OFE, TiAl6V4, CuBe2 and SS316 seem to be the best materials in reaching a stable field.
- ✓ We see very big differences in the fields reached between irradiated pairs and non irradiated pairs.
- ✓ Carbon deposition from irradiation seems to be directly correlated with breakdowns appearance.
- ✓ The blistering effect from irradiation doesn't seem to provoke a decrease of performance on the electrodes.

General Conclusions of the study

	E-Field (MV/m)		Expected field (from testing non-irradiated electrodes)
Cu OFE	?	Irradiated, after plasma cleaning	80 MV/m
	25	Irradiated pair, without cleaning	
SS316	?	Irradiated, after plasma cleaning	120 MV/m
	65	Irradiated pair, without cleaning	
CuBe2	80	Irradiated, after plasma cleaning	90-110MV/m
	45	Irradiated pair, without cleaning	

Proposal was made to preform Plasma cleaning treatment in this electrodes.

- As a pilot test, CuBe2 electrode was treated.

- After treatment, CuBe2 was tested again in the LES, where it achieved very good results.

By having good results with the pilot treatment plan, new electrodes of Cu-OFE and SS316 were submitted to irradiation and then plasma cleaned, in order to repeat the high pulsing tests. Cu-OFE is now under test and SS316 will be next.

Thank you

Installation of Cu sample for irradiation

- Sample was prepared in order to be compatible with the ESBD detector.
- EBSD Mapping was preformed on the Cu sample before irradiation.

History of the sample:

- Electropolished
- Heat treated

Picture from optical microscope using 80x magnification lens.

EBSD analysis

30 mm of length were covered on the analysis with different pixels step sizes between 10 and 4 microns, allowing us to have the indexation of the different grains.

Stitching map result from the EBSD analysis.

- > The grains presenting red color were associated with high density of blisters.
- > Grains presenting blue and green colors have showed to have less blisters/no blisters.

IPF Coloring || Z0 Copper 001

101

>20

Grain Boundaries

111

1.06%

For the blistering phenomena a parallel work is under study.

- > Trying to understand correlation between **different grains orientation vs blistering**.
- > Irradiated with same beam parameters Cu sample doing analysis with EBSD mapping and FIB/SEM

We are studying 3 main orientation:

- **001** orientation where we see the high density of blisters
- **101** orientation where we see lower density of blisters
- **111** orientation where we see few/no blisters

