C3 Status and Plans

Ankur Dhar, Emilio Nanni CLIC Mini-Week 12/12/2023

Acknowledgements

SLAC-PUB-17661 April 12, 2022

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

Martin Breidenbach, Brendon Bullard, Emilio Alessandro Nanni, Dimitrios Ntounis, and Caterina Vernieri PRX Energy **2**, 047001 – Published 26 October 2023

https://sites.google.com/view/ec4c3

Early Career Letter of Support for C^3

Fermilab, SLAC, LANL & Snowmass Session in Seattle

Cornell Aug. 31st-Sept. 1st

https://indico.classe.cornell.edu/ event/2283/overview

Next Workshop In Feb. 12/13th '24 @ SLAC

More Details Here (Follow, Endorse, Collaborate):

https://web.slac.stanford.edu/c3/

What's Next for the Energy Frontier?

Physics goals beyond HL-LHC:

1. Establish Yukawa couplings to light flavor \Rightarrow precision & lumi

2. Search for invisible/exotic decays and new Higgs \Rightarrow precision & lumi

3. Establish self-coupling \Rightarrow > 500 GeV e+e- operations

SLAC CLIC Mini Week

C³ Relevant Text and Recommendations in P5 Report (1)

- Section 6.4:
 - "There are exciting opportunities in the development of (i) new high average power, efficient drivers (RF, lasers, and electron beams), (ii) accelerating structures that can sustain high average power and gradient (metallic, plasma and dielectric)" ..."
 - "Normal conducting radio frequency (RF), superconducting RF, superconducting magnets, targets, and advanced acceleration concepts are essential to develop the next generation of accelerators for particle physics. The normal conducting RF program should incorporate innovative concepts such as cryogenic cool copper and distributed coupling."
 - Area Recommendation 8: Increase annual funding to the General Accelerator R&D program by \$10M per year in 2023 dollars to ensure US leadership in key areas.
 - "Technical and scientific plans should be developed for test facility projects that could be launched within the next 5–10 years. <u>These could include the second stage cool copper test</u>, which could develop high gradient normal conducting RF technology."
 - Area Recommendation 9: Support generic accelerator R&D with the construction of small scale test facilities. Initiate construction of larger test facilities based on project review, and informed by the collider R&D program.

C³ Relevant Text and Recommendations in P5 Report (2)

- Section 6.5:
 - "End-to-end designs are needed well before a decision can be made on a project in order to understand potential performance parameters and costs. These will guide research priorities and technology development as well as demonstrator facilities. Such early designs will also play a critical role in creating and sustaining the expertise to design such machines. Progress on these end-to-end designs should be evaluated (Recommendation 6)."
 - "R&D efforts in the next five years will inform test facilities as discussed in Section 6.4 for the mid-to-late decade time period and collider design results will set the stage for initiating a demonstrator facility (Recommendation 6), that would feed into future decisions on a potential collider project."
 - Area Recommendation 10: To enable targeted R&D before specific collider projects are established in the US, an investment in collider detector R&D funding at the level of \$20M per year and collider accelerator R&D at the level of \$35M per year in 2023 dollars is warranted.
- Section 6.9:
 - "Accelerator technologies play a key role in sustainability."
 - <u>"Accelerator structure improvements can also play an important role, including higher quality factor, and concepts like cool copper."</u>
 - Area Recommendation 20: HEPAP, potentially in collaboration with international partners, should conduct a dedicated study aiming at developing a sustainability strategy for particle physics.

C³ Initial Reaction to P5 Report (Emilio's Opinion)

- P5 creates room for a future Higgs Factory!
- We are in! Report highlighted value that cold copper technology can bring to HEP
- We will start with targeted push under GARD with the goal of building test capabilities
- Need to understand timeline for "second stage" tests (injector + one cryomodule)
 "Small" scale project (\$<50M) vs. mid/large scale which require "panel" review (Recommendation 6)
- Future Collider Initiative relies on our connection multiple collider concepts a highlight in presentation to P5 (next slide)
- Eager to find areas to collaborate with CLIC (Sustainability? Collider design studies?)

Synergies with Future Colliders

RF Accelerator Technology Essential for All Near-Term Collider Concepts

C³ Demo is positioned to contribute synergistically or directly to all near-term collider concepts

- CLIC components, damping, fabrication techniques
- ILC options for electron driven positron source based C³ technology
- Muon Collider high gradient cryogenic copper cavities in cooling channel, alternative linac for acceleration after cooling
- AAC C³ Demo utilized for staging, C³ facility multi-TeV energy upgrade reutilizing tunnel, $\gamma\gamma$ colliders
- FCC-ee common electron and positron injector linac from 6 to 20 GeV
 - reduce length 3.5X <u>OR</u> reduce rf power 3.5X

Wide Aperture S-band Injector Linac

CLIC Mini Week

- Planned test at Argonne
 - Tracking with Lucretia includes longitudinal and transverse wakes, chromatic effects etc
- Error study is 100 seeds, 100 μm element offsets, 300 μrad element rolls (rms)
 - No corrections applied

90% seeds < 8 um-rad with lattice errors

Vibrant International Community for Future Colliders is Essential

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

A novel route to a linear e⁺e⁻ collider

C³ Accelerator Complex

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m Large portions of accelerator complex compatible between LC technologies

- Beam delivery / IP modified from ILC (1.5 km for 550 GeV CoM), compatible w/ ILC-like detector
- Damping rings and injectors to be optimized with CLIC as baseline

C³ Parameters

C³ Technical Timeline for 250/550 GeV CoM

Technically limited timeline developed through the Snowmass process

Energy upgrade in parallel to operation with installation of additional RF power sources

HL-LHC

Ongoing Technological Development

Modern Manufacturing Prototype One Meter Structure

Integrated Damping with NiChrome Coating

Alignment and Vibrations

Beam Dynamics and Luminosity Studies

Studies ongoing towards ensuring target luminosity

Emittance Preservation with HOM Suppression

ty *Ntounis, Gray, Vernieri*

The pair background envelopes for C^3 are well contained within the beam-pipe.

Two Cell Assembly for High Power Test

Typical (Highest Gradient) Performance

• Measured and modeled response for CuAg Cavity

Breakdown Statistics

- Challenging due to short structure length – most data points O(1 hr)
- BDR of Cu and CuAg remarkably similar (very different than room temp)
- Showing day to day improvement
- Collected 5 more days of data – full analysis on going
- Very promising for longer flat top at 120 MeV/m

Special Thanks: A. Diego, M. Schneider, M. Boyce and A. Dhar

Power Consumption and Sustainability

- Compact footprint <8 km for both underground and surface sites
 - Underground less constraints on energy upgrade
 - Surface lower cost and faster to first physics
- Sustainability construction + operations CO₂ emissions per % sensitivity on couplings
 - Polarization and high energy to improve sensitivity

[%

- Construction CO_2 emissions \rightarrow minimize excavation and concrete
- Operations → limit power, decarbonization of the grid and dedicated renewable sources

Precision-Weighted Carbon Footprint

250 GeV CoM - Luminosity - 1.3x10³⁴

Parameter	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (125 GeV linac)	MW	2
Total Beam Power	MW	4
Total RF Power	MW	18
Heat Load at Cryogenic Temperature	MW	9
Electrical Power for RF	MW	40
Cryoplant Electrical Power	MW	60
Accelerator Complex Power	MW	~50
Site Power	MW	~150

Accepted PRX Energy, https://arxiv.org/abs/2307.04084

17

Quarter Cryomodule (QCM)

- Vacuum insulation, raft length up to 2.5 m
- Requisition is with procurement
- All drawings, technical documents complete
- Working with purchasing on RFP, aim to release prior to winter

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Outlook

The Complete C³ Demonstrator

CLIC Mini Week

Conclusions

- C³ provides a rapid route to precision Higgs physics with a compact 8 km footprint
 - Higgs physics run by 2040
 - US-hosted facility possible
- C³ time structure is compatible with ILC-like detector design and optimizations ongoing
- C³ upgrade to 550 GeV with only added rf sources
 - Higgs self-coupling and expanded physics reach
- C³ is scalable to multi-TeV
- C³ Demo advances technology beyond CDR level
 - 5 year program, followed by completion of TDR and industrialization
 - Three stages with quantitative metrics and milestones for decision points
 - Direct and synergistic contributions to near-term collider concepts

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Questions?

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Additional Material

Breakthrough in the Performance of RF Accelerators

RF power coupled to each cell – no on-axis coupling Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cells equally

Optimization of cell for efficiency (shunt impedance)

- $R_s = G^2/P \text{ [M}\Omega/\text{m]}$
- Control peak surface electric and magnetic fields

Key to high gradient operation

LAC CLIC Mini Week

Tantawi, Sami, et al. *PRAB* 23.9 (2020): 092001.

Cryo-Copper: Enabling Efficient High-Gradient Operation

Cryogenic temperature elevates performance in gradient

- Increased material strength is key factor
- Increase electrical conductivity reduces pulsed heating in the material

Operation at 77 K with liquid nitrogen is simple and practical

- Large-scale production, large heat capacity, simple handling
- Small impact on electrical efficiency

$$\begin{split} \eta_{cp} &= LN \; Cryoplant \\ \eta_{cs} &= Cryogenic \; Structure \\ \eta_k &= RF \; Source \end{split}$$

$$\frac{\eta_{cs}}{\eta_k}\eta_{cp}\approx \frac{2.5}{0.5}[0.15]\approx 0.75$$

CLIC Mini Week

Cahill, A. D., et al. *PRAB* 21.10 (2018): 102002.

C³ is based on a new rf technology

• Dramatically improving efficiency and breakdown rate

Distributed power to each cavity from a common RF manifold

Operation at cryogenic temperatures (LN₂ ~80 K) Robust operations at high gradient: 120 MeV/m Scalable to multi-TeV operation

Cryogenic Operation at X-band

High Gradient Operation at 150 MV/m

Nasr, et al., PRAB 24.9 (2021): 093201.

C³ Prototype One Meter Structure

High power Test at Radiabeam

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Site Power [MW]	121	168	125	$\sim \! 150$	~ 175
Design Maturity	CDR	CDR	TDR	pre-CDR	pre-CDR

Full Parameters

Collider	NLC[28]	CLIC[29]	ILC 5	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z [\mu \mathrm{m}]$	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
$\beta_y [\mathrm{mm}]$	0.2	0.1	0.41	0.12	0.12
$\epsilon_x \text{ [nm-rad]}$	4000	900	500	900	900
$\epsilon_y \; [\text{nm-rad}]$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient $[MeV/m]$	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	6	4.1	4.3	4.3

C³ Demonstration R&D Plan

C³ demonstration R&D needed to advance technology beyond CDR level Minimum requirement for Demonstration R&D Plan:

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
- Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate
- Operation with a multi-bunch photo injector high charges bunches to induce wakes, tunable delay witness bunch to measure wakes
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin) 170 MeV/m
 - 18X 50 MW C-band sources off the shelf units
- Fully damped-detuned accelerating structure
- Work with industry to develop C-band source unit optimized for installation with main linac This demonstration directly benefits development of compact FELs, beam dynamics, high brightness guns, *etc.* The other elements needed for a linear collider - the sources, damping rings, and beam delivery system – more advanced from the ILC and CLIC – need C³ specific design
 - Our current baseline uses these directly; will look for further cost-optimizations for of C³

Upgrade Options

Luminosity

- Beam power can be increased for additional luminosity
- C³ has a relatively low current for 250 GeV CoM (0.19 A) - Could we push to match CLIC at 1.66 A? (8.5X increase?)
- Pulse length and rep. rate are also options

Parameter	Units	Baseline	High-Lumi
Energy CoM	GeV	250	250
Gradient	MeV/m	70	70
Beam Current	А	0.2	1.6
Beam Power	MW	2	16
Luminosity	x10 ³⁴	1.3	10.4
Beam Loading		45%	87%
RF Power	MW/m	30	125
Site Power	MW	~150	~180

Caution: Requires serious investigation of beam dynamics - great topic for C³ Demonstration R&D

Energy

- Scalability studied to 3 TeV
- Requires rf pulse compression for reasonable site power
- Higher gradient option (155 MeV/m) in consideration

Cryogenics Scale to multi-TeV

arXiv:1807.10195 (2018) ³⁰

HTS Pulse Compressor

REBCO Coatings

Further Cavity Optimization Possible

- Single side coupling iris induces dipole and quad fields
- Coupling hole symmetrization and racetrack shape incorporated to minimize dipole and quad fields

w/o symmetrization

with symmetrization 100X reduction 31 Zenghai Li

SLAC CLIC Mini Week

RF Source R&D Over the Timescale of the Next P5

RF source cost is the key driver for gradient and cost
 Significant savings when items procured at scale of LC
 Need to focus R&D on reducing source cost to drive economic argument for high
 gradient
 Gradient/Cost Scaling vs. RF Source Cost for Main Linac

Understand the Impact on Advanced Collider Concept Enabled by the Goals Defined in the DOE GARD RF Decadal Roadmap

CLIC Mini Week https://science.energy.gov/~/media/hep/pdf/Reports/DOE_HEP_GARD_RF_Research_Roadmap_Report.pdf

RF Power Requirements

70 MeV/m 250 ns Flattop (extendible to 700 ns) ~1 microsecond rf pulse, ~30 MW/m Conservative 2.3X enhancement from cryo

No pulse compression
 Ramp power to reduce reflected power
 Flip phase at output to reduce thermals

One 65 MW klystron every two meters -> Matches CLIC-k rf module power

CLIC Mini Week

200

180

Input Power

Reflected Power - Beam Off

Gaussian Detuning Provides Required 1st Band Dipole Suppression for Subsequent Bunch, Damping Also Needed

Dipole mode wakefields immediate concern for bunch train 4σ Gaussian detuning of 80 cells for dipole mode (1st band) at f_c =9.5 GHz, w/ P_f/f_c =5.6% First subsequent bunch s = 1m, full train ~75 m in length

Damping needed to suppress re-coherence

CLIC Mini Week

Distributed Coupling Structures Provide Natural Path to Implement Detuning and Damping of Higher Order Modes

Individual cell feeds necessitate adoption of split-block assembly Perturbation due to joint does not couple to accelerating mode Exploring gaps in quadrature to damp higher order mode

Detuned Cavity Designs

Quadrant Structure

Abe et al., PASJ, 2017, WEP039

35

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development

Damping Slot Prototype

RF Power Requirements and Cryogenics

- 70 MeV/m 250 ns Flattop (extendible to 700 ns)
- ~1 microsecond rf pulse, ~30 MW/m 2.3X enhancement from cryo
- No pulse compression
 Ramp power to reduce reflected power
 Flip phase at output to reduce thermals
 <2.5 kW/m of structure for C3-250/550
 15% cooling officiones/ with LNL

Time (ns)

Beam Format and Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle

- Power pulsing possible, significantly reduce heat load
 - Factor of 50-100 power saving for FE analog power
- Tracking detectors **don't need active cooling**
 - Significantly reduction for the material budget
- Triggerless readout is the baseline
- C³ time structure is compatible with ILC-like detector overall design and ongoing optimizations

LC timing structure 200 ms <u>969 μs</u> <u>beamless time</u> <u>2625 bunches</u> = 1 train

1 ms long bunch trains at 5 Hz 2820 bunches per train 308ns spacing

C³ timing structure

Collider	ILC	CCC
σ_z	$300~\mu{ m m}$	$100 \ \mu { m m}$
eta_x	$8.0 \mathrm{mm}$	$13 \mathrm{~mm}$
$eta_{m{y}}$	$0.41 \mathrm{~mm}$	$0.1 \mathrm{~mm}$
ϵ_x	500 nm/rad	900 nm/rad
ϵ_y	35 nm/rad	20 nm/rad
N bunches	1312	133
Repetition rate	$5~\mathrm{Hz}$	$120 \mathrm{~Hz}$
Crossing angle	0.014	0.020
Crab angle	0.014/2	0.020/2

Why 550 GeV?

We propose **250 GeV** with a relatively inexpensive upgrade to **550 GeV**

- An orthogonal dataset at 550 GeV to cross-check a deviation from the SM predictions observed at 250 GeV
- From 500 to 550 GeV a factor
 2 improvement to the top Yukawa coupling
- O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

Collider	HL-LHC	C^3 /ILC 250 GeV	C^3 /ILC 500 GeV
Luminosity	3 ab^{-1} in 10 yrs	2 ab^{-1} in 10 yrs	$+ 4 \text{ ab}^{-1} \text{ in } 10 \text{ yrs}$
Polarization	-	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\%~(0\%)$
g_{HZZ} (%)	3.2	0.38(0.40)	0.20(0.21)
g_{HWW} (%)	2.9	0.38(0.40)	0.20 (0.20)
g_{Hbb} (%)	4.9	$0.80 \ (0.85)$	0.43 (0.44)
g_{Hcc} (%)	-	1.8(1.8)	1.1 (1.1)
g_{Hgg} (%)	2.3	1.6(1.7)	0.92(0.93)
$g_{H\tau\tau}$ (%)	3.1	0.95(1.0)	$0.64 \ (0.65)$
$g_{H\mu\mu}$ (%)	3.1	4.0(4.0)	3.8(3.8)
$g_{H\gamma\gamma}$ (%)	3.3	1.1 (1.1)	0.97 (0.97)
$g_{HZ\gamma}$ (%)	11.	8.9(8.9)	6.5(6.8)
g_{Htt} (%)	3.5	—	$3.0 (3.0)^*$
g_{HHH} (%)	50	49 (49)	22(22)
Γ_H (%)	5	1.3(1.4)	0.70(0.70)

One note on polarization

arXiv:1708.08912 arXiv:1801.02840

- There are extensive comparisons between the FCC-ee plan and the C³/ILC runs that show they are rather compatible to study the Higgs Boson
- When analyzing Higgs couplings with SMEFT, 2 ab⁻¹ of polarized running is essentially equivalent to 5 ab⁻¹ of unpolarized running.
 - Electron polarization is essential for this.
 But, there is almost no difference in the expectation with and without positron polarization.
 - Positron polarization allows more crosschecks of systematic errors. We may wish to add it later.
 - Positron polarization brings a large advantage in multi-TeV running, where the most important cross sections are from ele+_R

	2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab-350
coupling	pol.	pol.	unpol.	unpol
HZZ	0.50	0.35	0.41	0.34
HWW	0.50	0.35	0.42	0.35
Hbb	0.99	0.59	0.72	0.62
H au au	1.1	0.75	0.81	0.71
Hgg	1.6	0.96	1.1	0.96
Hcc	1.8	1.2	1.2	1.1
$H\gamma\gamma$	1.1	1.0	1.0	1.0
$H\gamma Z$	9.1	6.6	9.5	8.1
$H\mu\mu$	4.0	3.8	3.8	3.7
Htt	-	6.3	-	-
HHH	-	27	-	-
Γ_{tot}	2.3	1.6	1.6	1.4
Γ_{inv}	0.36	0.32	0.34	0.30
Γ_{other}	1.6	1.2	1.1	0.94

Physics: Higgs Production at e⁺e⁻

SLAC CLIC Mini Week

The Energy Frontier 2021 Snowmass Report

Sustainability

- Sustainability construction + operations CO₂ emissions per % sensitivity on couplings
 - Polarization and high energy to improve sensitivity
 - Construction CO₂ emissions minimize excavation and concrete
 - $\circ \quad \text{Operations} \rightarrow \text{limit power,} \\ \text{decarbonization of the grid and}$

					HL-LHC +		
%	Relative Precision (%)	HL-LHC	CLIC-380	ILC-250/C ³ -250	ILC-500/C ³ -550	FCC 240/360	CEPC-240/360
-	hZZ	1.5	0.34	0.22	0.17	0.17	0.072
	hWW	1.7	0.62	0.98	0.20	0.41	0.41
rgy to	$hb\bar{b}$	3.7	0.98	1.06	0.50	0.64	0.44
	$h\tau^+\tau^-$	3.4	1.26	1.03	0.58	0.66	0.49
	hgg	2.5	1.36	1.32	0.82	0.89	0.61
$ons \rightarrow$	$hc\bar{c}$		3.95	1.95	1.22	1.3	1.1
	$h\gamma\gamma$	1.8	1.37	1.36	1.22	1.3	1.5
	$h\gamma Z$	9.8	10.26	10.2	10.2	10	4.17
	$h\mu^+\mu^-$	4.3	4.36	4.14	3.9	3.9	3.2
er.	htī	3.4	3.14	3.12	2.82/1.41	3.1	3.1
, i d a a d	hhh	0.5	0.50	0.49	0.20	0.33	-
id and	$\Gamma_{ m tot}$	5.3	1.44	1.8	0.63	1.1	1.1
	Weighted average	-	0.94	0.86	0.45	0.59	0.49

Drojoot	Main tunnal langth (km)	(GWP (kton CO ₂ e)	
Project Main tunnel length (Main tunnel	+ other structures	+ A4-A5
FCC	90.6	578	751	939
CEPC	100	638	829	1040
ILC	13.3	97.6	227	266
CLIC	11.5	73.4	98	127
C^3	8.0	133	133	146

$$w = \frac{\left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC}} - \left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}{\left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}$$

$$\left\langle \frac{\delta \kappa}{\kappa} \right\rangle = \frac{\sum_{i} w_i \left(\frac{\delta \kappa}{\kappa}\right)_i}{\sum_{i} w_i}$$

Global Contributions

C³ Technical Timeline Only Possible with the Exceptional Progress of ILC and CLIC

Benefit from injector complex and beam delivery concepts

VKX-8311A

420

322

11.994

49 48

36.2

30 000

0.6

0.316

420

204

11.994

59

59

69

85 000

0.37

0.316

Continue to benefit from technological improvement by ILC and CLIC

High Efficiency RF Sources (CLIC)

3D Particle-in-Cell (PIC) simulations

/oltage, kV

Current, A

requency, GHz

Peak power, MW

Sat. gain, dB

Efficiency, %

field, T

VKX-8311A

Life time, hours

Solenoidal magnetic

RF circuit length, m

Electron Driven

Positron Source

Courtesy of Y. Enomoto

Nanobeams for IP (ATF)

Vibrant International Community for Future Colliders is Essential