

An Electron-Driven Neutron Source

Laurence Wroe (CERN, ATS-DO) <u>laurence.wroe@cern.ch</u>

Steinar Stapnes, Walter Wuensch, Andrea Latina, Roberto Corsini, Javier Olivares Herrados

VULCAN

(Versatile Ultra Compact Accelerator-driven Neutron source)

- Turnkey solution for generating thermal neutrons (~ Å)
 - Non-destructive, fast measurement of internal stresses of bulk metallic and ceramic structures
 - Non-destructive in-situ and in-operando diagnostic of electrodes in electric batteries (measure the dendritic growth of lithium)

DAES (Engineering solutions w/ neutron source expertise, Geneva)

DTI - Danish Technological Institute (Neutron source instrumentation expertise, Denmark)

Xnovo Technology (Software for instrumentation w/x-ray crystallographic imaging expertise, Denmark)

VULCAN Conceptual Layout

- Small footprint (existing lab)
- Measurements in realistic times
- Operated by local staff

- Low maintenance
- Lower power but more specialised than large neutron facilities

CERN Funding

- 2 years of funding from CERN CIPEA grant to:
 - Characterise the target-moderator-reflector system for generating neutrons in CERN's CLEAR beamline
 - Develop conceptual design for compact and affordable electron linac optimized for VULCAN requirements

CERN Innovation Programme on Environmental Applications

CLEAR Experiment

 Measure neutron pulse flux and width at different distances

Measurements with and without Gadolinium foils

What type of accelerator?

- VULCAN requirements:
 - Compactness
 - Affordability
 - Efficiency
 - Pulsed particle beam

High

Gradient

Electron

Linac

!!!

Beam Specification

Parameter	Value (at target)	Unit
Energy	35	MeV
Energy Spread	< 5	MeV
Beam Size	< 9	mm
e- Train Duration	< 1	μs
Repetition Rate	100	Hz
e- Train Charge	Maximise	nC
(e- Beam Power)	(> 1)	kW
Facility Footprint	~ 15 x 5 x 2.5	m ³
Facility Cost	1-5	M€

Optimisation - High-Level Choices

- Cost, compactness and charge heavily dependent on:
 - Frequency choice (S-, C- or X-band vary)
 - RF source (Single Klystron vary power, set by market)
 - Accelerating structure (Choose TW < 1 μs, pulse compressor)
 - Injector (Choose thermionic)
- Assume other ancillaries (diagnostics, vacuum system, correctors, cooling + HVAC etc.) are a constant cost

Optimisation Process Step 1: RF

Optimisation Process Step 2: Beam Dynamics

CERN

Momentum Spread

(CERN)

DELIVERED TO TARGET

• 120 nC charge in 700 ns

(Average beam power of 400 W)

- $\sigma_{\rm f} \sim 1~{\rm mm}$
- > 90 % particles over 30 MeV

Technologies Compared

X-Band TW (XLS)	X-Band TW (XLS)	S-Band TW (FERMI HG)	S-Band TW (FERMI HG)	C-Band TW (ELI)
https://www.comp actlight.eu/	https://www.comp actlight.eu/	<image/> <caption></caption>	<image/> <caption></caption>	https://journals.aps.o rg/prab/abstract/10.1 103/PhysRevAccelB eams.20.032004
Canon E37113 X-band Klystron:	CPI VKX-8255A X-band Klystron:	Canon E37325 S-band Klystron:	 S-band Klystron:	 C-band Klystron:
 5 µs pulse 	 3.5 µs pulse 	 5 µs pulse 	 5 µs pulse 	 4 µs pulse
• 8 MW power	• 25 MW power	10 MW power	25 MW power	8 MW power

	X-Band TW (XLS)	X-Band TW (XLS)	S-Band TW (FERMI HG)	S-Band TW (FERMI HG)	C-Band TW (ELI)			
RF								
Struct Length [m]	1.7	1.0	3.3	2.3	3.0			
Klystron Power [MW]	8	25	10	25	8			
Loaded <g> [MV/m]</g>	23	37	11	18	12			
> 30 MeV [%]	93	-	83	80	-			
BEAM								
Train Charge [nC] Beam power [W]	120 390	650 2450	220 780	1100 3500	100 390			
Train Length [ns]	700	1000	800	1000	950			
Bunch Charge [pC]	15	-	140	360	-			
Beam Size [mm]	0.9	-	2.7	2.8	-			
Peak Current [mA]	220	-	420	2200	-			
COST								
Cost Estimate	1.5 M€	1.8 M€	1.4 M€	1.8 M€	1.5 M€			

Conclusions and Next Steps

Preliminary study

- Select technology to develop into CDR design with DAES
 - Optimum trade-off between cost, compactness and electron beam power
- Write code into user-friendly tool
- Write up results

• Developing to mini-CDR

- Develop RF structure
 - CST simulations
- Develop beam dynamics
 - Wakefield and offset studies
- Write into mini-CDR

Thanks for listening

Baseline cost estimate

- Assume the below costs are constant across the different technology choices
 - Gun + Cathode + HV supply = 75 k€
 - RF distribution network (inc. LLRF) = 190 k€
 - Mechanics and controls = 25 k€
 - Vacuum equipment = 40k€
 - Diagnostics = 140 k€
- TOTAL BASELINE = 455 k€
- (Note infrastructure, electrical installation, controls ignored here)

