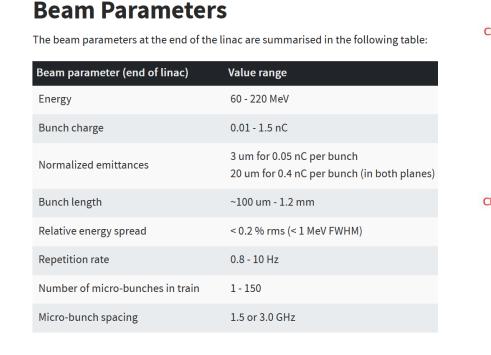
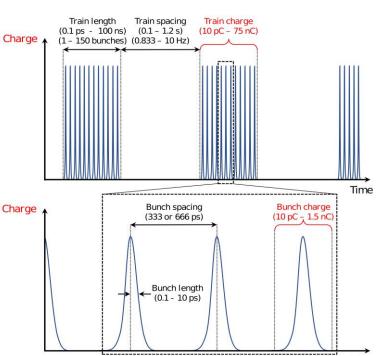


CLEAR 2023 - Highlights and status of the second beam line

W. Farabolini on behalf of the CLEAR team:

R. Corsini – A. Aksoy – A. Malyzhenkov – P. Korysko – V. Rieker – L. Wroe
E. Granados – M. Calderon (Laser experts)
S. Doebert - S. Curt – A. Chauchet (RF experts)
J. Bateman – C. Robertson (Oxford PhD students)
K. Sjobaek (remotely from Oslo)

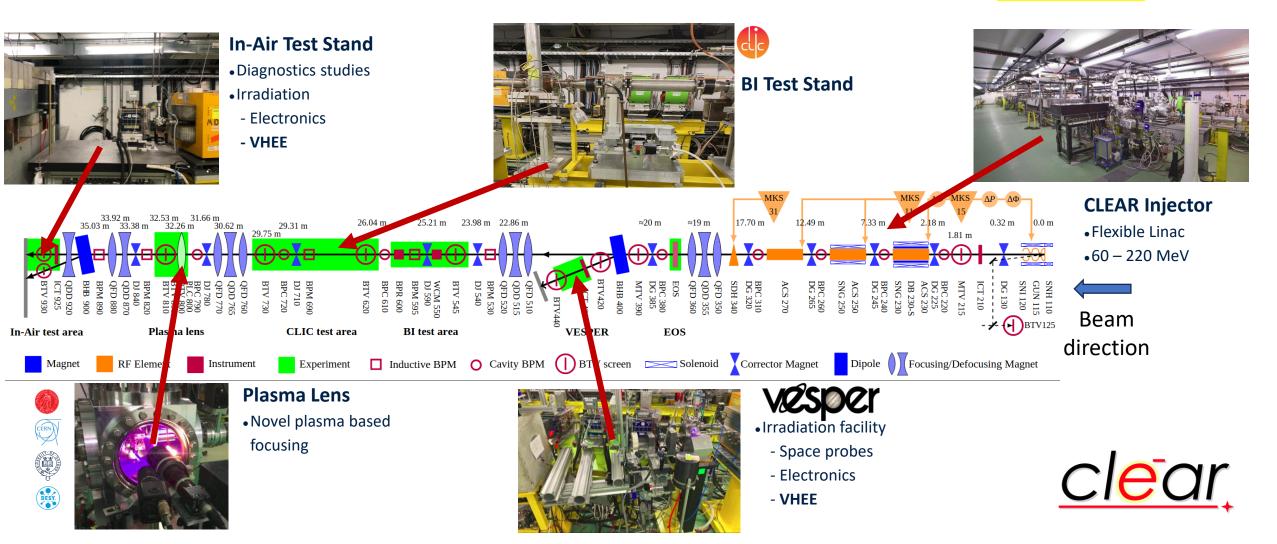

What is CLEAR ?

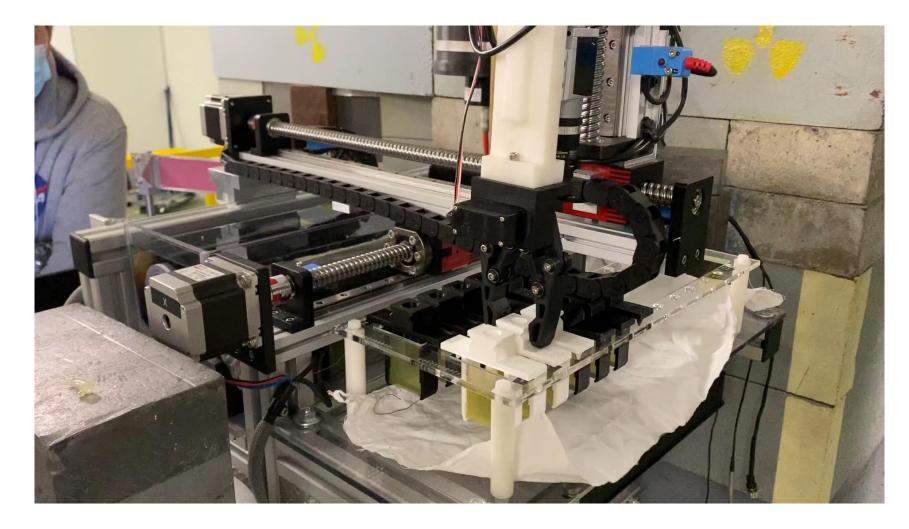

Scientific and strategic goals:

cl**e**ār₊

• Unique electron beam test facility at CERN with high availability, easy access and high-quality. Part of Euro-Labs, transnational access program

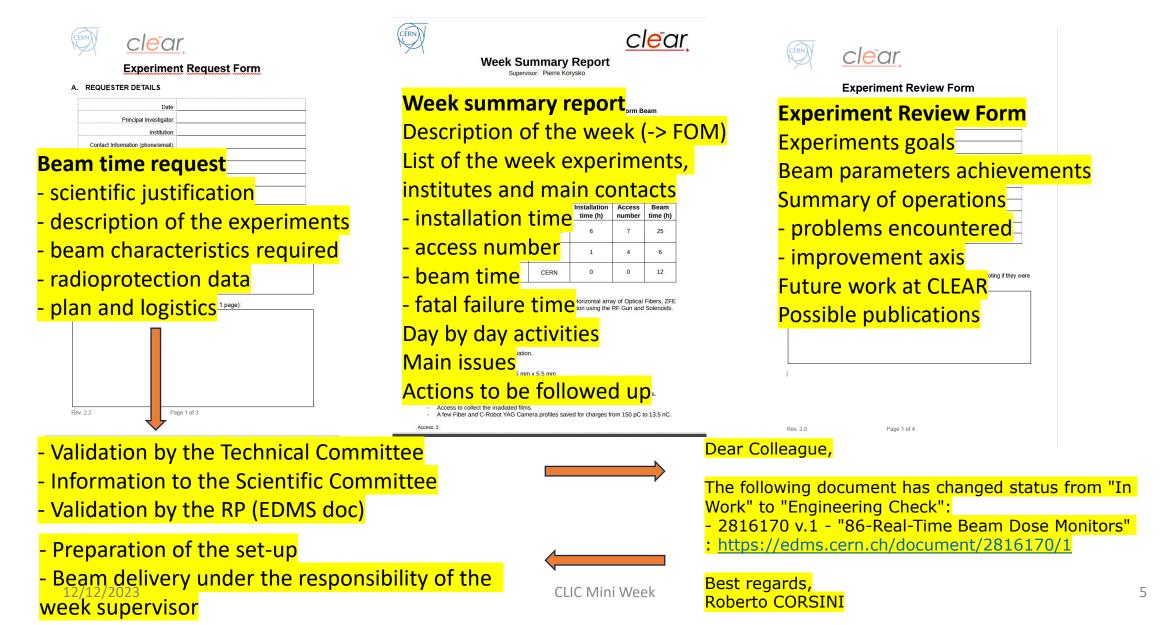
- R&D on accelerator components, beam instrumentation, high gradient RF technology.
- Irradiation facility with Very High Energy Electrons (VHEE) and Ultra-High dose rate, for technical and medical applications
- Maintaining CERN and European expertise for electron LINACs linked to future collider studies.
- Using CLEAR as a training infrastructure for the next generation of accelerator scientists and engineers.





Credit: P. Korysko

clear, The C-Robot developed for medical samples



Recently requested by PITZ @ DESY

CLEAR user's experiments workflow

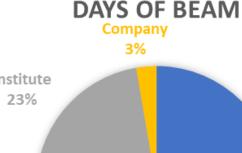
CLEAR summary of operations weeks

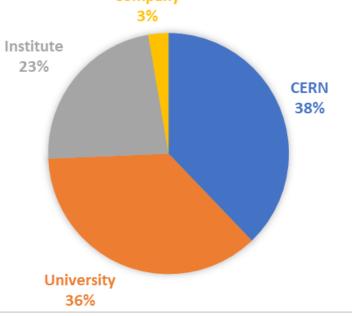
Week	Type of experiment	Institute	Install (h)	Acces nb.	Beam time (h)							
11	MD	ABP	6	1	6		29	Bunch Length Monitor EOS for FCC	KIT	8	3	25
11	Neutron monitors	CERN- RP	2	7	22		29	LUXE BPM	INFN Bol./Pad.	2	1	5
12	Optic fiber dosimetry	Oxford U.	5	8	20		30	Real time dosimetry	Oxford U.	6	7	25
12	Film dosimetry	Oslo U.	5	2	19		30	ZFE irrad	CHUV	1	4	6
13	LUXE BPM	INFN Bol./Pad.	16	5	46		30	MD uniform beam	ABP	0	0	12
14	Scatterers	Oxford U.	8	5	24		31-33	Summer shut-down PL installation		30	1	
14	Real time dosimetry	Oxford U.	2	0	6		34	Plasma Lens	Oslo U.	6	5	25
14	Uniform beam generation	Cern-ABP	0	0	6		35	Dual Scatterers for flat beam	Oxford U.	6	9	30
15	Wall current transformer	Bergoz	2	2	12		36	Ch DR BPMs for Awake	Oxford U.	4	6	15
15	MD Cavity BPMs	ABP	0	0	16		36	VHEE chemnistry	CHUV	0.5	2	6
16	MD Dispersion free steering	ABP	u - 37 weeks of beam 37 Fluorescence dosimetry 37 Alanine dosimetry							1	6	17
	Optic fiber dosimetry	Oxford U								0.5	1	4
	Film dosimetry	Oslo U. CFRN-BL 1 1 1 18										
-	MD Flat Beam space charge	ABP Mancheste - 279 hours of set-up installation RHUL								16	1	0
17	Plasmid irradiations									16	1	25
17	Film dosimetry	Oxford U. verpool U. / C. 2 8 36										
18	Medical irradiation Ch. ZFE Cells	CHUV _	230 a	acces	ses wi	th t	he r	radioprotectioi	Пвр	0	0	3
18	Optic fiber dosimetry											
	Ch DR	CERN-BI								0	0	5
	VHEE UHDR	Victoria U.	Victoria U. 42 VHEE Beam monitoring								7	18
20	ZFE irrad. And phantom dosimetry	CHUN	CHUV								7	15
	MD	ABP - 40 NOURS OT TATAL TAILURE Ch DR BLM for FCC CERN-BL 3 2										4
	Scintillator dosimetry											
	VHEE UHDR larve irrad.	VICTORIA U 1.9 experiments per week in average								5	5	50
	Spatially fractionated irrad.									0	2	5
	MD	ABP	0	0	6		45	P-cubed BBP	ABP PSI	4	3	30
	Ch DR BPMs for Awake	Oxford U.	2	2	20		46	microBPMs	CERN-EP-DT	3	7	12
-	EOS	CERN-BI	4	9	25		46	Detectors	Kansas U.	3	6	20
	LUXE BPM	INFN Bol./Pad.	0	0	4		40	VHEE irradiation of cells	CHUV	2	5	20
24	MD	ABP	1	0	50		48	optic fiber BPM	Oxford U.	8	2	15
25	Quarz fiber Cherenkov	Bologna U.	10	5	32		48	Dual Scatterers for flat beam	Oxford U.	2	1	15
25	LUXE BPM	INFN Bol./Pad.	1	0	3		48	YAG/film comparison	Oslo U.	1	1	2
	MD	ABP	8	7	36		48	MD dosimetry prediction code	ABP	0	0	5
	Ch DR EOS	CERN_B	4	4	35		48	MD BBA	ABP	0	0	50
28	MD BBA	ABP	0	0	8		49	Flat beam generation	ABP	0	0	10
28	CHUV preparation	CHUV	3	3	12		_		ADF	-	-	
							total			279	230	1209

ERN

Type and origins of the experiments in 2023

- CERN ABP
- CERN BI


clear,


- CERN RP
- CERN EP
- CERN TE
- CERN SY

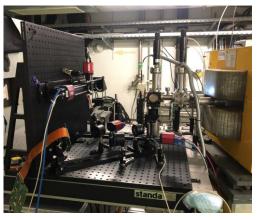
- Manchester Univ.
- Oxford Univ.
- RHUL
- Liverpool Univ.
- Strathclyde Univ.
- Queen's Univ.
- Oslo Univ.
- Bern Univ.
- Victoria Univ.
- Kansas Univ.

- PSI
- CHUV
- EPFL
- INFN Bologna
- INFN Padova
- KIT
- PTB
- RAL ENEA
- Cockcroft Inst.
- JAI

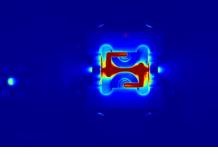
- BERGOZ
- DAES

Operation

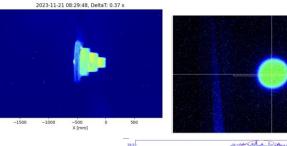
2023

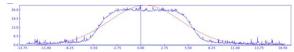

- **27** Experiments
 - About 18 User Groups internal/external
 - More than 13 external collaborating institutes
 - Beam from February 27th to December 15th (with 3 weeks summer stop)
 - 39 weeks of operation in total

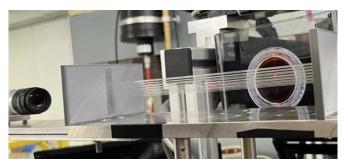
Credit R. Corsini


A few Highlights

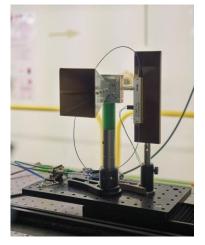
AWAKE Cherenkov Diffraction Radiation BPM



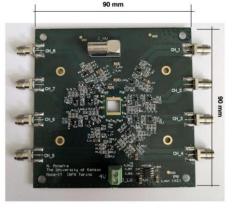

Novel OTR-based emittance meas. system for AWAKE (Liverpool U.)



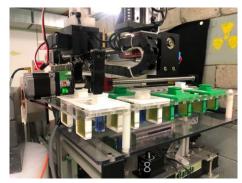
Plasma lens defocusing tests (Oslo U./CERN/Oxford U./DESY)


Double-scattering system for uniform beam delivery for VHEE radiotherapy (CERN/Oxford U.)

Fibre-optic beam profile and dose monitor for VHEE radiotherapy at ultra-high dose dates(CERN/Oxford U.)


Coherent Cherenkov diffraction radiation dielectric/buttons (FCC-ee bunch length monitors)

Broadband Pick-up for the **PSI** Positron Production Project (FCC-ee collaboration)

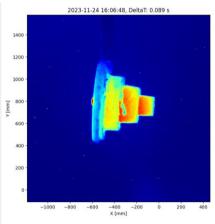


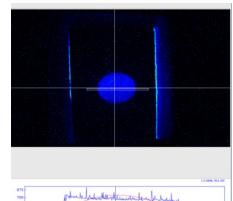
Bunch Profile Monitor for FCC-ee (Karlsruhe) CLIC Mini Week

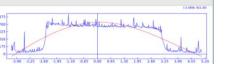
Beam testing of PCB + detectors using different technologies (Kansas U.)

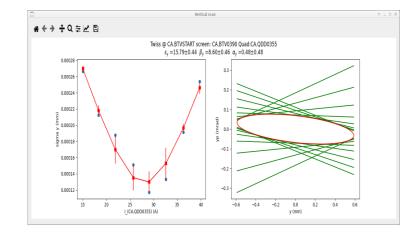
Real-time dosimetry for VHEE radiotherapy using cuvettes (Strathclyde U.)

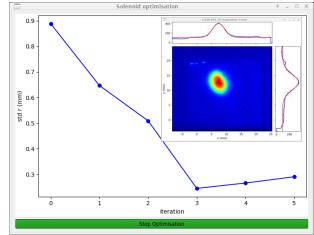
Beam availability

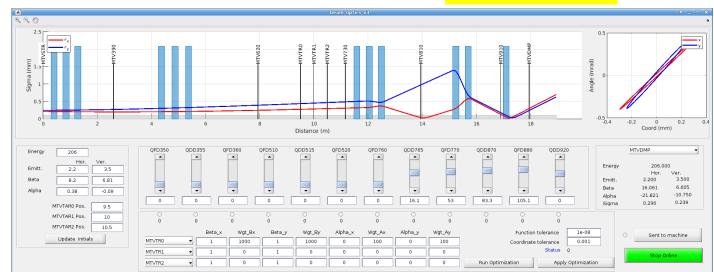

- Fatal failure time: 40 hours affecting 6 weeks (96.7 % beam availability)
 - Laser: chiller cartridge, attenuator controller, amplifier water leak, (continuous run during weeks)
 - Klystrons: some periods of recurrent trips
 - Turbo-pump (controller inside CLEAR)
 - Access control
 - Power cuts
- Consolidation program
 - New laser oscillator bought
 - Many amplifier spares from PHIN injector
 - New modulator station being prepared for klystron active spares
 - Turbo-pump controller being installed in the klystron gallery




Some recent developments requested by users

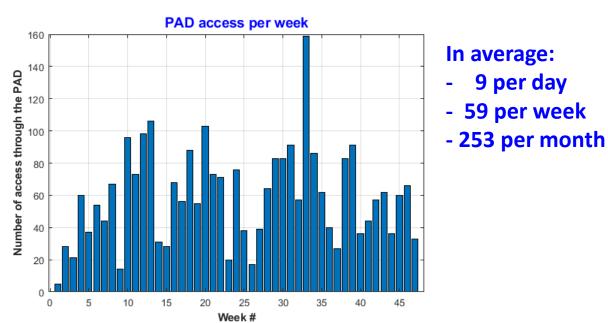

• Codes:


- Quad Scan
- Orbit simulation
- Dose prediction
- Multi-standard cameras control
- Beam Base Alignment
- Devices:
 - Double scatterers shaped for flat beam profile generation with collimator



<mark>See Avni's talk</mark>


CLIC Mini Week


CERN

- A very large number of accesses for experiment installation and user's interventions on their set-up.
 - RP calls: **213** from 01/01/23 to 30/11/23 (minimum delay 30 min, require klystron stop, limited to working hours)
 - PAD accesses: **2802** D. Chapuis: « Access Point sur le complexe PS. Vous êtes en tête de liste ! »

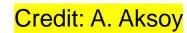
Mutualizing accesses with two experimental beam lines will increase the overall running time and allow more experiments per week. Complex set-up could stay installed for longer time.

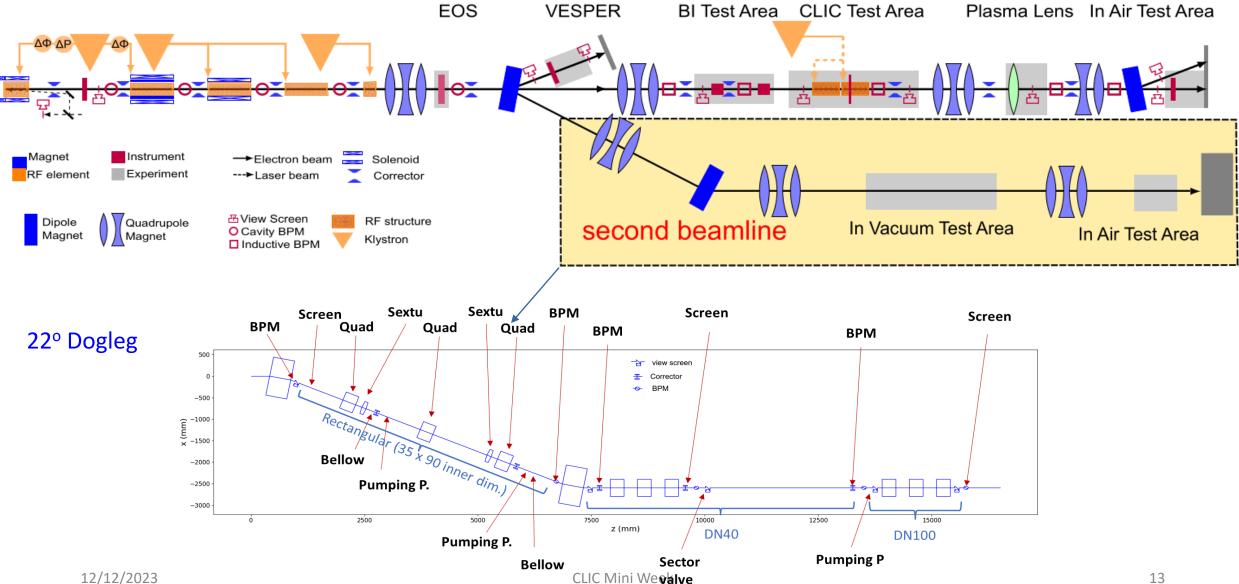
- To fulfil new experiments requirement (large beam size, bunch compression, larger experimental areas)
- Time: no operations interruption apart of the usual shutdowns (summer: 3 weeks, winter: 2 months)
- **Resources**: Only the annual material budget (+ some Eurolabs founding)
- No up-to-date drawings of the actual beam line (due to many user's driven quick changes)
- Limited support availability during the YETS

Solutions:

Optimize the design (accurate beam dynamic study, large chamber size, magnetic chicane, use of sextupoles)

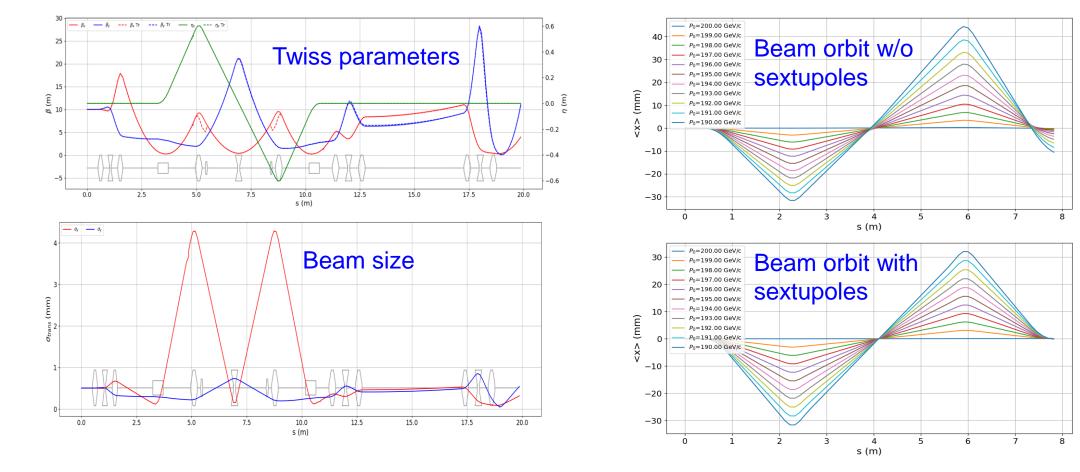
Reuse of the existing equipment (taken from Drive Beam or DL/CR)


Reuse of the installed cables whenever possible, no general de-cabling


Tasks driven or even executed by the CLEAR team during shutdown, with the support of various groups experts.

Flexibility in the commissioning date (Summer 24 or early 25)

Beamline Layout


12/12/2023

ERN

<u>Clear</u> Beam dynamic studies

- The dispersion is closed by side quadrupoles of a standard dogleg.
- Flexible beam size adjustment with triplets on straight line
- Sextupoles are adapted to close second order dispersion when energy spread is large

Credit: A. Aksoy

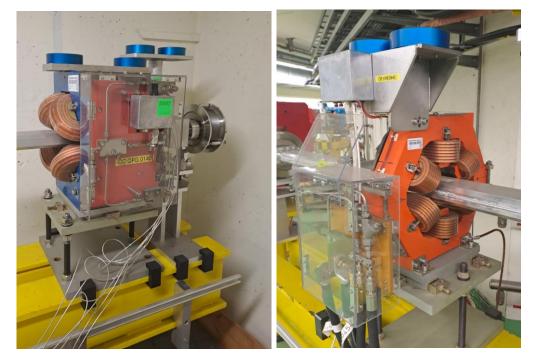
Work Progress

CERN

- Theoretical analysis performed (Luke, Alex, Avni), footprint validated
- Area cleared last summer (Transport group)
- Cables sorting started (by ourself, but EN-EL to provide help)
- 10 Quad and 3 Sextupoles taken from the CR renewed by the Magnet group TE-MSC-NCM (before YETS)
- Power supplies identified in the gallery by SY/EPC
- Survey work scheduled for January by BE-GM-ASG (footprint tracing)
- Vacuum chambers identified and result transmitted to EN-MME-EDS
- Vacuum layout being validated by TE-VSC
- New RP sensors ordered by HSE-RP
- Some components ordered (YAG screens, cameras, BCM, optical breadboard)
- Progress meeting every Tuesday

Area cleared during summer shut-down

Alley ready to host the dog-leg


Former Drive-Beam dump still to be removed

Equipment being evacuated

Some recent pictures

Renewed quads and sextupoles with large aperture

Blank mounting and obtained solution for the dogleg.

Stay in touch on our website: https

https://clear.cern/

Thank you for your attention

