

Status of the ChDR R&D at ATF2

Stefano Mazzoni, Thibaut Lefevre, Andreas Schloegelhofer, Sara Benitez CERN

Pavel Karataev, RHUL

Renjun Yang, CSNS

Alex Aryshev, KEK

13/12/2023 CLIC mini week

The context: Optical Diffraction radiation

Optical Diffraction Radiation (ODR) studies started in 2011 at CESR and then ATF2 since 2015

- Non invasive transverse beam size with micrometre resolution (CLIC)
- Limitations:
 - low light yield
 - not suitable for rings
 - Synchrotron radiation background

What we need:

- higher light yield
- emission at larger angles

T. Aumeyr et al., PRAB 18, 042801 (2015); L. Bobb, PhD thesis, 2017; L. Bobb et al., PRAB 21, 032801 (2018); M. Bergamaschi et al. Phys. Rev. Applied 13, 14041 (2020)

Cherenkov Diffraction Radiation (ChDR)

The electric field of ultra-relativistic charged particles passing in the vicinity of a dielectric radiator produces photons by the Cherenkov mechanism (polarization effect).

- Large emission angle: $\cos(\theta_{Ch}) = \frac{1}{\beta n}$
- Photons emitted along the target

Particle: γ,β

For <u>cylindrical</u> geometry:

ChDR in realistic geometries

In real accelerators, dielectrics emitting ChDR will be elements embedded in beam pipe walls (a) or prisms (b)

~7

- non-cylindrical geometry
- finite length

B.M. Bolotovskii, Sov. Phys. Usp. 4 781 (1962).
Ulrich, Z. Physik 194, 180–192 (1966).
H. A. Olsen and H. Kolbenstvedt, Phys. Rev. A, vol. 21, Jun 1980.

a)

Θ.

BC

8

V

DR

Incoherent ChDR light yield: not measured to date!

Incoherent ChDR has a potential for longitudinal diagnostics for high energy future colliders (CLIC, ILC, FCCee), but models predict large differences in photon yield

Overview of ChDR experiments

CERN BI and collaborators established a comprehensive study on ChDR for beam instrumentation applications

- Observation / characterization of coherent / incoherent ChDR:
 - CESR (Cornell University): first observation of incoherent ChDR (2017)
 - CLEAR (CERN): incoherent / coherent photon yield studies (2018 present)
 - ATF2 (KEK): incoherent light yield (present)
 - Tomsk Microtron (Tomsk): far-IR ChDR superradiant emission (2020)
 - Diamond Light Source (UK): coherent and incoherent ChDR (2018-2019)
- Beam diagnostics studies
 - ATF2 (KEK): transverse beam profile (2018-2019)
 - CLEAR (CERN) and CLARA (Daresbury UK): bunch length via incoherent ChDR (2018-present)
 - CLEAR and AWAKE (CERN): beam position via coherent radiation (2018 present)
 - Diamond Light Source (UK): incoherent BPM (2022 present)

Overview of ChDR experiments

CERN BI and collaborators established a comprehensive study on ChDR for beam instrumentation applications

- Observation / characterization of coherent / incoherent ChDR:
 - CESR (Cornell University): first observation of incoherent ChDR (2017)
 - CLEAR (CERN): incoherent / coherent photon yield studies (2018 present)
 - ATF2 (KEK): incoherent light yield (present)
 - Tomsk Microtron (Tomsk): far-IR ChDR superradiant emission (2020)
 - Diamond Light Source (UK): coherent and incoherent ChDR (2018-2019)
- Beam diagnostics studies
 - ATF2 (KEK): transverse beam profile (2018-2019)
 - CLEAR (CERN) and CLARA (Daresbury UK): bunch length via incoherent ChDR (2018-present)
 - CLEAR and AWAKE (CERN): beam position via coherent radiation (2018 present)
 - Diamond Light Source (UK): incoherent BPM (2022 present)

Incoherent ChDR yield at ATF2

Incoherent ChDR has a potential for longitudinal diagnostics for high energy future colliders (FCCee,...), but incoherent light yield not known precisely ...challenging measurement!

- At moderate γ (GeV), impact parameter is limited
- Imperative to avoid spurious photons:
 - Cherenkov from beam halo
 - synchrotron radiation

Incoherent ChDR at ATF2 - setup

Incoherent ChDR at ATF2 - setup

Summary of June tests

Summary of June tests

1.0 GeV, 150 pC

Signal dominated by Cherenkov produced by halo particles crossing the target!

Possible upgrade of ChDR setup

CERN

Possible upgrade of ChDR setup

- FLUKA simulation: effect of 1x1x4 cm W absorber
- 1.2 Gev, 1,2 nC, 50 um sigma gaussian bunch
- Look for charged particles with b>0.685 in a 10 mrad cone coaxial with beam direction
- Expected reduction order 10⁶

PRELIMINARY

Possible upgrade of ChDR setup

- preserve most of existing design: vertical actuators, support, replacement chamber
- new chamber probably needed for adding 45 deg viewport
- new design should better reject synchrotron radiation (vertical polarisation)

CÉRN

- Incoherent ChDR can be source for beam diagnostics for future high energy colliders
- Attempts at ATF2 unsuccessful so far, partially due to setup not adapted to ChDR
- (Very) preliminary studies show a possible new setup design that would allow better noise rejection
- New PhD student starting in 2024 to measure incoherent ChDR light yield and possibly perform longitudinal profile measurement at ATF2.
- We look forward to discussing with ATF2 team for beam time availability, modification of setup, upgrade of controls etc. etc.

