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= Muon collider - potential short cut to
the energy frontier

= Multi-TeV collisions in next
generation facility

= Combine precision potential of I7s
e*e” with discovery potential of pp

= High-flux, TeV-scale neutrino
beams for nuclear & BSM physics
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= Cooling time must be competitive
with muon lifetime

= |onisation cooling
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Ionisation Cooling
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= Beam loses energy in absorbing material
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction

= End up with beam that is more parallel
= Multiple Coulomb scattering from nucleus degrades the effect
= Mitigate with tight focussing — low [3

= Mitigate with low-Z materials
= Equilibrium emittance where MCS cancels the cooling

= Verified by the Muon Ionisation Cooling Experiment (MICE)
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! Transverse cooling - maths @

Mnigrmations!
= This can be expressed in terms of a change of emittance on passing
through an absorber

de,, 1 /dE N 1 13.62 3,
"~ . €,
dz E \ dz 2m Lgp 33, E

rel

dE/dz is negative!
Cooling

= There exists an equilibrium emittance where the two terms balance (no
emittance change)

1. 136 .61
2m Lp ﬁrd < >

en(equilibrium) =

= Seek to minimise equilibrium emittance
= Maximise radiation length Lz and energy loss dE/az
= Minimise focusing function (3,
= Maximise acceptance — size of beam accepted in cooling channel



Muon Cooling

LH, wedge 325 MHz coils
08 ) cavities

Sayed et al, PRSTAB 18, 2015
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Cooling Cells
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= Solenoids typically have long fringe fields
= Acceptance of the magnets is worse for short fringe fields
= Consequence: thin lens approximation not a good model
= Consider instead the equation for focusing strength
= (No canonical angular momentum)

| 8 \F
08181~ (8))2 + 482 (%p) —4=0

,B = Twiss beta (~beam size)

’B’ = derivative in z Magnet focusing strength
,B": d derivative i B: 1s solenoid field on the z-axis
SCCONE dCT1vallve 1h 2 p- is momentum in z direction

g 1s muon charge

& Science & Technology Facilities Council



Constant solenoid solution

Simplest sqution - uniform solenoid

2@/ y" +4p2 (QB) _4=0
p-y

p::
qb5.

3 1 =

Basic premise behind final cooling
= Get Bz as high as possible — minimise O1
= Trim pz as emittance decreases — smaller Bz
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Final cooling — example lattice @
JA e

= Example lattice — final cooling
= Note several phase advances in each solenoid — they are not thin lenses!
= Excellent transverse cooling — but longitudinal heating
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Longltudlnal Heatlng ;@\ E/
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In longitudinal phase space, the beam is usually heated
= Heating due to random noise in the energy loss I.e. “straggling”
= Heating due to curvature in energy loss (heating or weak cooling)

1< E? d dE 1< E*
d<EBE*> (,ddBY .,  (d<E*>

dz dE dz dz .
Viasou

Mitigate using emittance exchange
= Move emittance from longitudinal to transverse phase space

; UON Collider
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Emittance exchange %Z

= Tnitial beam is narrow with some momentum spread

= [ow transverse emittance and high longitudinal emittance
= Beam follows curved trajectory in dipole

= Higher momentum particles have higher radius trajectory

= Beam leaves dipole wider with energy-position correlation
= Beam goes through wedge shaped absorber

= Beam leaves wider without energy-position correlation
= High transverse emittance and low longitudinal emittance
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Emittance Exchange — Realisation?
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Cooling System
' ' Cell length 2m
Peak solenoid field on-axis 72T
Dipole field 02T
Dipole length 0.1 m
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RF nominal phase 20°
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Rectilinear Cooling Optics

= Consider again the differential equation for focusing strength

B 2

= Take a magnetic field that is a set of Fourier harmonics
= Thin lens approximation is a bad one for solenoids!

B.= Y bnexp( Wzm>

n=—aoo

= We expect solutions that are also a set of Fourier harmonics

/8J_ — Z /87?, eXp (zwznz)

n=—oo
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Stop Bands & Pass Bands @
Jdveices

Wang & Kim, Phys. Rev. E 63, Recursive solution
for beam dynamics of periodic focusing channels

L sin( \/19071’) Re[ﬁ E’:’QHWS/L] |
B(s)= — (1% E —
T Uy sin u n=1 —1)g

=  What do solutions look like?

= @, are ~ Fourier harmonics of B,
i Reglons where solutions are stable and unstable
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Transverse Position [mm]

Transverse Position [mm]

Dipole field — an extra dimension
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Magnetic Field

Magnetic Field

Separate to the transverse optics, dipole field is also
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Field off the axis @ —’
= Field off the axis can be expressed as derivative of solenoid on-axis
field (consequence of Maxwell’'s equations)

Bl = n!((;l—)nl)! (5)" e 'Baar=0)

= "] 2n
BZ(T‘,Z):( ) (g) 02"B,(z,r = 0)

= Impact on Dynamic Aperture?

= Dynamic Aperture = transverse region of the beam where the magnets
are focusing

= Qualitatively DA is worse for lower 3|
= ] know of no analytical evaluation

= Numerical discussion - below
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! Optics vs momentum @
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= Acceptance driven by tune consideration
= Tune = number of focusing oscillations per magnetic cell
= Acceptance for tune near to resonances

& Science & Technology Facilities Council



R&D Programme @
JAseieates

= R&D Programme to test these ideas
=  MICE — check basic beam physics concept with ionisation cooling
= MTA test stand — first ideas on RF cavities in magnetic fields
= New? RF test stand — further development of RF cavity concepts
= Cooling cell build — integrate RF, magnets and absorbers
= Demonstrator — beam test
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MICE - Experimental set up %;

i Measure muo
E position and m i m i m e |
| Mmomentum _ v 10 S s :  Measure muon !
i opstream | C AR iy A S position and |
fe Y ' [l momentum
downstream E

i { ool the miton
. beam using !

- LiH,LH,, or ;

: 1

/| Dpolyethylene 1

. wedge :

,  absorbers !

- 1

L [

& Science & Technology Facilities Council



Emittance reduction @
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Submitted to Nature Physics
Lithium Hydride

= When absorber installed:

e [
E, L
= Cooling above equilibrium emittance g °%F g .
. crer . . C s &
= Heating below equilibrium emittance o e -
. B L]
= When no absorber installed oof- N
= Optical heating I R }
. . L ;; No absorber Data . L] $
= Clear heating from Al window [ [ Yo oo Simton MWCE |
-0.6— No absorber Model LI ST w10
e
¢, at TKU Reference Plane [mm]
Liquid Hydrogen
e [
E, L
40 ; s 4 §
0:— s N
02~ g s
L L]
L # Full LH; Data
_0.4}— | ® FullLH, Simulation L)
~ A Empty LH, Data
C . Empty LH, Simulation .'!'.Lcofc 017 0705 ()
081 | iyt | it ae [
e

g, at TKU Reference Plane [mm]
& Science & Technology Facilities Council



MICE - lattice @
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= MICE lattice was a section of a full cell
= Full cell had similar sort of stop band structure that we
propose in rectilinear lattice
= Note beta is very flat with momentum
= Also good acceptance and focusing performance
= Awkward “Coupling Coil” interferes with RF
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Cooling Demonstrator

ollaboration

RF Sglenoid Absorber

* Upstream Instrumentation 5
and Matching ownstream
Instrumentation

== High-intensity high-energy pion source

Target Collimation and
phase rotation
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Comparison with Existing Data %D

Upstream Spectrometer Solenoid r Solenoid
TOFO TOF1 TOF2
‘1 = D E—— o #
Ckov Ckov \5 = = = = = {
A B

RF S/olenoid Abs/orber

= = = = = = = = == = = =l
o T I ATy A T

g R SR D
Upstream Instrumentation
and Matching

-ﬂ.\:_ == High-intensity high-energy pion source

Target Collimation and
phase rotation

Downstream
Instrumentation

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single patrticle Bunched beam
Instrumentation HEP-style Multiparticle-style
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Be RF & LiH Performance
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= Use Beryllium for RF cavity
walls 35 ]

= Use LiH in absorber

= Good cooling performance

E
= Transverse and longitudinal 5
emittance reduced by ~ 20 % ¢

= Approx factor two reduction in

2.0+

6D emittance -
=  QOptimisation ongoing 15 )
. tl) 10 20 3ID 40 5|D
= Assumes perfect matching for 2 [m]
now Transmission losses 2.00%
= Assume LiH for now Decay losses 4.00%
= Liquid Hydrogen performance Irans & . 12‘;’ mm
likely better rans & ou > mm
Long € In 3.61 mm
Long € out 2.99 mm

& Science&TechnologyGD ein 12.7 mm?
< |S|S 6Deout 6.3 mm?3



Outlook
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= Very exciting time for high brightness muon beam R&D
= ] covered very basic aspects of currently studied cooling channels

= No time for

= Helical cooling channels

= Pure emittance exchange schemes

= Parametric Resonance Ionisation Cooling
Quadrupole focused ionisation cooling
Cooling rings

= Aspects are in common
= Need for extreme focusing
= Need for large Dynamic Aperture
= Tightly packed RF and focusing elements

= Need to prototype this equipment to show practical use
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