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Muon Collider

 Muon collider → potential short cut to 
the energy frontier
 Multi-TeV collisions in next 

generation facility
 Combine precision potential of 

e+e- with discovery potential of pp
 High-flux, TeV-scale neutrino 

beams for nuclear & BSM physics
 Bright muon beams are required

 Protons onto a target to make 
pions

 Pions are captured and decay to 
muons

 Muon beam is cooled to get to 
high brightness

 Cooling time must be competitive 
with muon lifetime
 Ionisation cooling
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 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more parallel

 Multiple Coulomb scattering from nucleus degrades the effect
 Mitigate with tight focussing → low β
 Mitigate with low-Z materials
 Equilibrium emittance where MCS cancels the cooling

 Verified by the Muon Ionisation Cooling Experiment (MICE)

Ionisation Cooling

Absorber MUONSRF



  

 This can be expressed in terms of a change of emittance on passing 
through an absorber

 There exists an equilibrium emittance where the two terms balance (no 
emittance change)

 Seek to minimise equilibrium emittance
 Maximise radiation length LR and energy loss dE/dz
 Minimise focusing function
 Maximise acceptance – size of beam accepted in cooling channel 

Transverse cooling - maths

dE/dz is negative!
Cooling

dE/dz is negative!
Cooling

Heating
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Muon Cooling

4D Final 
cooling Rectilinear

cooling

Stratakis et al, PRSTAB 18, 2015
Zhu et al, COOL23

Sayed et al, PRSTAB 18, 2015
Fol et al, IPAC22 
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 Solenoids typically have long fringe fields
 Acceptance of the magnets is worse for short fringe fields
 Consequence: thin lens approximation not a good model

 Consider instead the equation for focusing strength
 (No canonical angular momentum)

Cooling Cells

β = Twiss beta (~beam size)

β’= derivative in z

β’’= second derivative in z

Magnet focusing strength
Bz is solenoid field on the z-axis
pz is momentum in z direction
q is muon charge
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 Basic premise behind final cooling
 Get Bz as high as possible → minimise 
 Trim pz as emittance decreases → smaller Bz

Constant solenoid solution

00
 Simplest solution – uniform solenoid
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Final cooling – example lattice

 Example lattice – final cooling
 Note several phase advances in each solenoid – they are not thin lenses!
 Excellent transverse cooling – but longitudinal heating



  

 In longitudinal phase space, the beam is usually heated
 Heating due to random noise in the energy loss I.e. “straggling”
 Heating due to curvature in energy loss (heating or weak cooling)

 Mitigate using emittance exchange
 Move emittance from longitudinal to transverse phase space

Longitudinal Heating
Low energy particle 
loses more energy

High energy particle 
loses less energy



  

 Initial beam is narrow with some momentum spread
 Low transverse emittance and high longitudinal emittance

 Beam follows curved trajectory in dipole
 Higher momentum particles have higher radius trajectory
 Beam leaves dipole wider with energy-position correlation

 Beam goes through wedge shaped absorber
 Beam leaves wider without energy-position correlation
 High transverse emittance and low longitudinal emittance

Emittance exchange

Dipole
Wedge 
shaped 
absorber
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Emittance Exchange – Realisation?
2 m

Solenoid + 
dipole RF cavity Absorber

β = parameterised beam width
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 Consider again the differential equation for focusing strength

 Take a magnetic field that is a set of Fourier harmonics
 Thin lens approximation is a bad one for solenoids!

 We expect solutions that are also a set of Fourier harmonics

Rectilinear Cooling Optics
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Stop Bands & Pass Bands

 What do solutions look like?

 Θn are ~ Fourier harmonics of Bz

 Regions where solutions are stable and unstable

U
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e B-type A-type

Wang & Kim, Phys. Rev. E 63, Recursive solution 
for beam dynamics of periodic focusing channels
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Dipole field – an extra dimension

 Separate to the transverse optics, dipole field is also important



  15

Field off the axis

 Field off the axis can be expressed as derivative of solenoid on-axis 
field (consequence of Maxwell’s equations)

 Impact on Dynamic Aperture?
 Dynamic Aperture = transverse region of the beam where the magnets 

are focusing
 Qualitatively DA is worse for lower
 I know of no analytical evaluation 

 Numerical discussion - below
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Optics vs momentum

 Acceptance driven by tune consideration
 Tune = number of focusing oscillations per magnetic cell
 Acceptance for tune near to resonances 

Survival probability
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R&D Programme

 R&D Programme to test these ideas
 MICE – check basic beam physics concept with ionisation cooling
 MTA test stand – first ideas on RF cavities in magnetic fields
 New? RF test stand – further development of RF cavity concepts
 Cooling cell build – integrate RF, magnets and absorbers
 Demonstrator – beam test

 Other desirables
 Proton beam → collective effects
 Final cooling test
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MICE - Experimental set up

Measure muon 
position and 
momentum 
downstream

Measure muon 
position and 
momentum
upstream

Cool the muon 
beam using 
LiH, LH

2
, or 

polyethylene 
wedge 

absorbers

Beam 
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Emittance reduction

 When absorber installed:
 Cooling above equilibrium emittance
 Heating below equilibrium emittance

 When no absorber installed
 Optical heating
 Clear heating from Al window

P. Jurj o.b.o. MICE collaboration
Submitted to Nature Physics
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MICE - lattice

 MICE lattice was a section of a full cell
 Full cell had similar sort of stop band structure that we 

propose in rectilinear lattice
 Note beta is very flat with momentum
 Also good acceptance and focusing performance
 Awkward “Coupling Coil” interferes with RF

Coupling 
coil

Focus 
coils
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Cooling Demonstrator
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Comparison with Existing Data

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single particle Bunched beam
Instrumentation HEP-style Multiparticle-style
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Be RF & LiH Performance

 Use Beryllium for RF cavity 
walls

 Use LiH in absorber
 Good cooling performance

 Transverse and longitudinal 
emittance reduced by ~ 20 %

 Approx factor two reduction in 
6D emittance

 Optimisation ongoing
 Assumes perfect matching for 

now
 Assume LiH for now

 Liquid Hydrogen performance 
likely better

Transmission losses 2.00%
Decay losses 4.00%

1.95 mm
1.57 mm
3.61 mm
2.99 mm

Trans ε in
Trans ε out
Long ε in
Long ε out
6D ε in 12.7 mm3

6D ε out 6.3 mm3
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Outlook

 Very exciting time for high brightness muon beam R&D
 I covered very basic aspects of currently studied cooling channels
 No time for

 Helical cooling channels
 Pure emittance exchange schemes
 Parametric Resonance Ionisation Cooling
 Quadrupole focused ionisation cooling
 Cooling rings
 …

 Aspects are in common
 Need for extreme focusing
 Need for large Dynamic Aperture
 Tightly packed RF and focusing elements

 Need to prototype this equipment to show practical use
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