

MInternational UON Collider Collaboration

Status of 704 MHz cavity design for the Muon Cooling Demonstrator

Outline

- Introduction
 - Motivation of the study
- Eigenmode RF simulations in CST Studio Suite[®]
 - 704 MHz pillbox cavity
 - 704 MHz pillbox-type cavity for the Muon Cooling
- RF-thermo-mechanical simulations in COMSOL Multiphysics[®]
 - Coupled RF-thermo-mechanical studies on the cavity
 - Lorentz Force Detuning (LFD) analysis
- Conclusions and Perspectives

Motivation of the study

 Build a conceptual RF design and Multiphysics numerical model of a 704 MHz pillbox-type cavity for the Muon Cooling Demonstrator

- Normal conducting cavities
- $f_0 = 704 \text{ MHz}$
- Short RF pulses (~μs)
- High peak accelerating gradient $(E_{pk} = 44 \text{ MV/m})$
- High peak solenoid field (up to 14 T)

704 MHz Pillbox cavity

 Vacuum model simulated in CST according to the beam dynamics specification given by Chris Rogers.

Parameter	Unit	Pillbox - Cu	Description
f ₀	[MHz]	704	Operating frequency
L _{cav}	[mm]	125	Cavity length
R _{cav}	[mm]	163.10	Cavity radius
E _{nom}	[MV/m]	44	Average Nominal gradient
V _{nom}	[MV]	5.50	Nominal voltage
β	[-]	0.884	Relativistic beta
TTF	[-]	0.83	Transit-time factor
V _{acc}	[MV]	4.56	Accelerating voltage
E _{acc}	[MV/m]	36.44	Accelerating gradient

Beam dynamics specifications

Transit-Time factor

$$TTF = \frac{\int_{z_{\min}}^{z_{\max}} \underline{E}_{z}(0,0,z) e^{jkz} dz}{\int_{z_{\min}}^{z_{\max}} \underline{E}_{z}(0,0,z) dz} \quad \text{with} \quad k = \frac{\omega}{\beta c}$$

Nominal and accelerating voltage

 $V_{\rm nom} = E_{\rm nom} L_{\rm cav}$ $V_{\rm acc} = TTFV_{\rm nom}$

704 MHz Pillbox cavity – Pulse shape and power dissipation

- The voltage profile was calculated for a short beam pulse, considering the coupling factor $\beta_{\text{coupling}}=1.2$
- The average power dissipation was computed from the obtained duty factor (DF)

704 MHz Pillbox-type cavity for the Muon Cooling

- The 704 MHz pillbox-type cavity was built based on a design similar to the LBNL 805 MHz pillbox cavity.
- Beryllium (Be) window: 60 mm ($3\sigma_{\text{beam}}$) or 120 mm radius (\mathbf{R}_{w}); 60 um or 120 um thickness (\mathbf{t}_{w})

704 MHz Pillbox-type cavity for the Muon Cooling

Parameter	Unit	MC Cu Cavity (R _w = 60 mm)	MC Cu Cavity (R _w = 120 mm)	Description
f ₀	[MHz]	704	704	Operating frequency
R _{cav}	[mm]	175.66	191.00	Cavity radius
t _w	[um]	60-120	60-120	Be window thickness
Q ₀	[-]	1.82E+04	2.02E+04	Intrinsic Quality Factor
R/Q	[Ω]	98.14	159.32	Geometric shunt impedance
$R/Q \cdot Q_0$	[MΩ]	1.79	3.22	Shunt impedance
$P_{\rm diss}$	[MW]	12.18	6.45	Peak P _{diss} on walls
DF	[-]	1.19e-05	2.49e-05	Beam duty factor
P _{ave}	[W]	144.99	128.80	Peak P _{diss} on walls
E_{peak}	[MV/m]	97.29	44.22	Peak surface E-field
B_{peak}	[mT]	173.53	110.63	Peak surface B-field

- Peak dissipated power P_{diss} on walls (~factor 2 less for larger window because of higher shunt impedance)
- Average power P_{ave} on walls (11% less for larger window)
 - E_{peak} (~2 less for larger window)

Peak E and H fields on the cavity

- Maximum E-field is localized on the cavity iris, while maximum H-field on the upper cavity walls
- Peak E-field needs to be minimized to reduce the risk of RF-breakdown and mitigate Lorentz Forces
- Peak H-field needs to be reduced for the RF-heating

Power loss and Temperature Gradient

Temperature gradient

P_{diss.ave.walls}=169.2 W

P_{diss,ave,Windows}=0.7 W

Average power losses

T_{max}=302 K

$$T_c$$
=300 K at $E_{nom} = 44$ MV/m

 $P_{\text{diss,ave}} = \int_{A} \frac{1}{2} DF \cdot R_{s}(T, f_{0}) \mathbf{H} \cdot \mathbf{H}^{*} dA$

∆T = 2K

Carmelo Barbagallo, Alexej Grudiev | MuCol WP8 Cooling Cell Workshop, 18-19/01/2024, CERN

y z x

von Mises Stress vs Yield strength

 $\sigma_{Mises,Cu} = 373 \text{ kPa} < 250 - 350 \text{ MPa} = \sigma_{Yield,Cu}$

 $\sigma_{Mises,Be} = 5.49 \text{ kPa} < 240 \text{ MPa} = \sigma_{Yield,Be}$

No plastic deformations, good safety margin to failure.

Thermally induced total displacement

$$u_{\mathrm{th,max}} = 0.717 \, \mu\mathrm{m}$$

Thermally-induced frequency shift

 $\Delta f_{\rm th} = -0.195 \,\rm kHz$

 $\Delta f_{3dB} = 38.7 \text{ kHz}$

The frequency shift is lower than the 3 dB bandwidth.

Carmelo Barbagallo, Alexej Grudiev | MuCol WP8 Cooling Cell Workshop, 18-19/01/2024, CERN

Thermal stress, displacement and frequency shift

No

window

Lorentz Force Detuning: stress and RF field pressure

Lorentz Force Detuning – Frequency shift on the cavity walls

The frequency shift due the Lorentz Force was initially investigated on the Cu walls only.

 $u_{\rm max} = 0.41 \, {\rm um}$ Frequency shift $\Delta f_{LFD} \propto K_L E_{acc}^2$ $\Delta f_{LFD} = -1.392 \text{ kHz}$ at $E_{\text{nom}} = 44 \text{ MV/m}$ 0.00 -Cu cavity walls Frequency sensitivity coefficient $K_L = 0.999 \, \text{Hz}/(\text{MV/m})^2$ $[^{\rm zH3}]_{\rm CH1} [^{\rm zH3}]_{\rm TH2}$ -1.502507501000 15000 5001250 $E_{\rm acc}^2 \, [({\rm MV/m})^2]$

The calculated frequency shift is lower than the 3 dB bandwidth ($\Delta f_{LFD} = 38.7 \text{ kHz}$) if the RF field pressure is applied on the Cu cavity walls only.

Carmelo Barbagallo, Alexej Grudiev | MuCol WP8 Cooling Cell Workshop, 18-19/01/2024, CERN

Total displacement

Preliminary results: LFD effect on both cavity walls and windows

- The frequency shift is higher than the 3 dB bandwidth when RF field pressure is applied on both cavity walls and windows. This is due to the large deformation and displacement detected at the Be windows.
- The implemented LFD model is based on the Slater theorem, which is valid only for small deformation.
- The used linear elastic assumption is typically valid within the 2-3% of deformations. Even the model includes geometric non-linearity, the assumption that a purely elastic material can undergo arbitrary large deformations may not be entirely valid.

Conclusions and Perspectives

- A conceptual RF design and Multiphysics model of a Copper 704 MHz pillbox-type operating at 44 MV/m for the Muon Cooling Demonstrator was built based on beam dynamics specification.
- RF figures of merit were computed for two different Be window sizes (60 mm and 120 mm radius). The peak
 dissipated power and surface electric field are a factor 2 less for the cavity featuring 120 mm radius window.
 RF parameters still need to be optimized to reduce peak power and surface electric field.
- RF thermo-mechanical and Lorentz Force Detuning simulations on the 60 mm window radius cavity show that:
 - Most of the power is dissipated on the Cu cavity walls (169.2 W), only 0.7 W are dissipated on the Be windows. The maximum temperature of 302 K is reached on the window under ideal cooling condition (T_c = 300 K).
 - The maximum thermally-induced total displacement is 0.717 µm on the Be window. The von Mises stress is lower than the yield stress for both materials (no risk of rupture). The thermally-induced frequency shift is -0.195 kHz, which is lower than the cavity bandwidth (38.7 kHz).
 - The von Mises stress is lower than the yield stress for both materials. A significant RF field pressure of ranging from -27.5 mbar to 1.49 mbar was detected on the Be window.
 - The maximum total displacement induced by Lorentz forces is 752 µm on the Be window, which induces a frequency shift of –157 kHz. The computed frequency shift is 4 times higher than the bandwidth.
- Larger Be window and mechanical deformations need to be addressed. The implementation of a more accurate numerical model for simulating Lorentz Forces in the large deformation regime might be necessary.

MInternational UON Collider Collaboration

Thank you for your attention