Cooling Demonstrator Design Studies

P. B. Jurj¹²

¹Particle Physics Department STFC (RAL)

²Blackett Laboratory Imperial College London

MuCol WP8 Cooling Cell Workshop, 18 - 19 Jan 2024

P. B. Jurj (RAL/ICL)

Cooling Demonstrator Design Studies

WP8 Workshop, 18.01.23 1 / 32

• Ionisation cooling proof-of-principle demonstrated by MICE (2020)

- Only one pass through an absorber
- No acceleration
- Transverse (4D) cooling only
- Study of 6D cooling a natural follow-up
 - Demonstrate 6D cooling
 - Stage multiple cooling cells
 - Accelerate with RF cavities
 - Achieve suitable cooling performance

Muon Cooling Demonstrator

• Design in progress

- Preliminary cooling cell done (C. Rogers)
- Preliminary phase rotation & collimation done (C. Rogers)
- Muon (pion) production and transport work in progress
 - Design informed/impacted by the siting options

Demonstrator facility siting options at CERN

P. B. Jurj (RAL/ICL)

Cooling Demonstrator Design Studies

WP8 Workshop, 18.01.23

4/32

Demonstrator facility siting options at CERN

Two siting options at CERN are currently considered

- Intersection Storage Rings (ISR) complex
 - In the TT7 extraction line
 - Proton beam from the PS
 - Near surface level, lower proton beam power required (10kW), 14 GeV

• TT10

- Pion production system could be shared with the nuSTORM facility
- Proton beam from the PS (26 GeV) or SPS (100 GeV)
- Underground, beam power up to 80 kW (first phase)

- Protons impinge on a target \rightarrow pions \rightarrow muons
- Muon yield can be improved by:
 - Choosing a suitable target geometry and material
 - Improving the pion capture efficiency
- Pion capture usually achieved using:
 - Magnetic horns
 - Solenoid channel

Pion momentum range

- Aim to produce muons with 190-210 MeV/c momentum
- Which pions are we interested in?

Figure: Muon distribution from a (left) 270-330 MeV/c and (right) 210-330 MeV/c pion beam.

P. B. Jurj (RAL/ICL)

7/32

Target & Capture System - Magnetic Horn

Baseline target and horn design derived from the FNAL nuSTORM horn optimization study [1]

- Target: Inconel, cylindrical rod, L = 46 cm (3 interaction lengths), r = 0.63 cm
- Capture: Magnetic horn, optimised to deliver 5 GeV pions (!) from a 120 GeV proton beam impinging on the target
- Currently under study @nuSTORM

- Simulated 10⁶ protons-on-target for the three proton beam energies considered at CERN:
 - 14, 26 and 100 GeV (all with $\sigma_{x,y} = 2.67$ mm)
- Horn current: I = 220 kA
- Estimated the yield of π^+ with momenta in the 270 330 MeV/c range and within a transverse acceptance cut of 2 mm rad

Table: Pion yield in the 270 - 330 $\,MeV/c$ range

E ₀ [GeV]	14	26	100
At target [/POT]	0.10	0.15	0.35
At horn exit [10 ⁻² /POT]	1.06	1.63	4.01
Within 2 mm rad $[10^{-4}/POT]$	3.24	5.16	13.75
Energy normalised $[10^{-5}/POT/GeV]$	2.31	1.99	1.38

- Number of pions produced at target scale with the proton beam energy
- Pion yield per proton energy largest at 14 GeV
- N.B. Capture efficiency to be improved

π^+ at target: Angle Distribution

 π^+ in the 270-330 MeV/c momentum range

Angle: $\theta = \arctan(p_T/p_z)$

Figure: (left) 14 GeV, (middle) 26 GeV, (right) 100 GeV proton beam energy

Choice of material motivated by the extensive knowledge and use of graphite targets.

- Target: Graphite, cylindrical, L = 80 cm (1.78 interaction lengths), r = 0.63 cm
- Capture: Horn, I = 220 kA

Table: Pion yield in the 270 - 330 MeV/c range

E ₀ [GeV]	14	26	100
At target [/POT]	0.07	0.09	0.16
At horn exit $[10^{-2}/POT]$	0.79	1.05	2.07
Within 2 mm rad $[10^{-4}/POT]$	2.80	4.27	7.53
Energy normalised $[10^{-5}/POT/GeV]$	2.00	1.64	0.75

Graphite target: radius/beam size optimisation

- Proton beam: E = 14 GeV, $\sigma_{x,y} = 2.67 \text{ mm}$
- Target: Graphite, cylindrical
- Target radius varied between 2 and 4 times the beam size
- Capture: Horn, I = 220 kA
- \bullet Simulated 5.0 \times 10 6 POT for each configuration

P. B. Jurj (RAL/ICL)

WP8 Workshop, 18.01.23 13 / 32

Graphite target: proton beam size optimisation

- Proton beam: E = 14 GeV
- Target: Graphite, cylindrical, $r = 3\sigma_{x,y}$
- Proton beam size varied between 1 and 5 mm
- Capture: Horn, I = 220 kA
- \bullet Simulated 2.0 \times 10^{6} POT for each configuration

Graphite target: Length optimisation

- Proton beam: E = 14 GeV, $\sigma_{x,y} = 2 \text{ mm}$
- Target: Graphite, cylindrical, $r = 3\sigma_{x,y}$
- Capture: Horn, I = 220 kA
- \bullet Simulated 5.0 \times 10 6 POT for each configuration

Capture: challenges

- Large pion angles, with a majority of pions produced outside the effective angular acceptance of existing horn
- Small fraction of captured pions useful for producing muons within the transverse emittance required

Capture: optimisation

• Horn geometry can be further optimised \rightarrow currently under study

P. B. Jurj (RAL/ICL)

Cooling Demonstrator Design Studies

WP8 Workshop, 18.01.23 17 / 32

Capture: optimisation

Can pursue higher yields using:

• Multiple horns

- Solenoid capture more challenging for the low power option (and expensive regardless)
 - To be explored

Neutrino Factory horn prototype

- Simone Gilardoni thesis
- Proton beam: E = 2.2 GeV, $\sigma_{x,y}$ = 2.2 mm
- Target: Mercury, cylindrical, L = 30 cm, r = 0.75 cm
- Yield for pions in 200-800 MeV and 4.2 mm rad transverse acceptance:
 - 1.4 ×10⁻³ π⁺/POT
 - 0.6 $\times 10^{-3} \ \pi^+/{\rm POT/GeV}$
- Yield for the TT7 option 10 kW (14 GeV) proton beam, graphite target, one horn 220 kA – in the same momentum and transverse acceptances:
 - 1.9 $\times 10^{-2} \pi^+/\mathrm{POT}$
 - 1.4 $\times 10^{-3} \pi^+/\mathrm{POT/GeV}$

How many muons/POT in 190-210 MeV/c?

TT7 - Graphite

- Proton beam: E = 14 GeV, $\sigma_{x,y} = 2 \text{ mm}$
- Target: Graphite, L = 80 cm, $r = 3\sigma_{x,y}$
- Horn: I = 220 kA

For a pion momentum bite of 210-330 MeV/c:

• 2 mm rad \rightarrow 7.9 \times 10^{-4} $\pi^+/{\rm POT}$ \rightarrow 1.53 \times 10^{-4} $\mu^+/{\rm POT}$

N.B.

- Bunch time structure not considered yet
- $\bullet\,$ Expect to produce 5 10 100 ps bunches from a \sim 7 ns pulse

Next Steps: solenoid capture

- Comparative study with the magnetic horn
- Some space concerns:
 - Tunnel only about 2.8 m wide
 - Solenoid + decay channel may require 10 20 m in length
 - Current assumption is that the beam dump (and chicane) will be located in the chamber in the middle region of the tunnel \rightarrow target in region where the tunnel has an incline?

Next Steps: beam transport

- Transport: target \rightarrow beam preparation system \rightarrow cooling stage
 - Finalize design, integrate in one simulation

• Ideally pions would decay into muons before the chicane \rightarrow can we place the target further upstream?

Next Steps: cooling cell

Cooling System	
Cell length	2 m
Peak solenoid field on-axis	7.2 T
Dipole field	0.2 T
Dipole length	0.1 m
RF real estate gradient	22 MV/m
RF nominal phase	20°
RF frequency	704 MHz
Wedge thickness on-axis	0.0342 m
Wedge apex angle	5°
Wedge material	LiH

- Implement preliminary cooling cell lattice design (C. Rogers) in BDSIM
- Study performance and iterate design
- Integrate in a start-to-end simulation

• Target & capture preliminary design done

- 14 GeV proton beam option feasible for TT7 option provided adequate capture
- Efficient capture is challenging due to the large pion angles
- Priority is horn-based capture, with a solenoid comparison study to follow
- 190 210 MeV/c muon yield $\sim {\cal O}(10^{-4}/POT)$ for a few ns pulse. Further work required to account for:
 - Bunch time structure
 - Pion and muon losses during transport to the cooling channel
- Plans to develop a cooling channel model in BDSIM and integrate it in a start-to-end demonstrator simulation

A. Liu, A. Bross, and D. Neuffer.

Optimization of the magnetic horn for the nustorm non-conventional neutrino beam using the genetic algorithm.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 794:200–205, 2015.

Thank you!

P. B. Jurj (RAL/ICL)

Cooling Demonstrator Design Studies

WP8 Workshop, 18.01.23 2

æ

Back-up

P. B. Jurj (RAL/ICL)

Cooling Demonstrator Design Studies

< E WP8 Workshop, 18.01.23

æ

Image: A matrix and a matrix

Magnetic Horn Focusing

Toroidal magnetic field generated between the inner and outer conductors

$$B_{\phi} = \frac{\mu_0 I}{2\pi r}; \ B_z = B_r = 0$$

Induces a radial kick to charged particles passing through the field region

$$\Delta\theta = \frac{B_{\phi}z}{p} = \frac{\mu_0I}{2\pi r}\frac{z}{p}$$

Horn geometries generally seek to ensure a larger radial kick for particles entering the field region at larger radii.

28 / 32

- Used FLUKA to simulate the proton-target interaction and tracking of the secondary particles in the magnetic field of the horn
- Horn and target geometries derived from code provided by John Back (nuSTORM GitHub repository)
- Particle position and momentum recorded at:
 - the downstream end of the horn, within the outer conductor radius
 - the target surface

π^+ at target: Longitudinal Position Distribution (z)

π^+ in the 270-330 MeV/c momentum range

Figure: (left) 14 GeV, (middle) 26 GeV, (right) 100 GeV proton beam energy

At lower proton beam energies, more pions are emitted towards the upstream end of the target. Might inform capture system design.

- The wider momentum range (2x) provides \sim 70% more captured pions in the transverse phase space of interest (2 mm rad)
- Further study required
 - Consider transfer line & cooling channel acceptance. The 190-210 MeV/c muon sample will contain muons that decay backwards and sideways in the pion rest frame. Muons that decay orthogonally to the pion momentum will have a divergence of \sim 150 mrad ($p_T\approx$ 30 MeV/c)
 - PID implications?

TT10 (nuSTORM) - Inconel

- Proton beam: E = 100 GeV, $\sigma_{x,y} = 2.67 \text{ mm}$
- Target: Inconel, L = 46 cm, r = 0.63 cm
- Horn: I = 220 kA

For a pion momentum bite of 270-330 MeV/c:

 $\bullet~2~{\rm mm}~{\rm rad} \to 13.8 \times 10^{-4}~\pi^+/{\rm POT} \to 2.4 \times 10^{-4}~\mu^+/{\rm POT}$ N.B.

- Bunch time structure not considered yet
- Pion capture efficiency can be improved