

Windows for final cooling

Jose A. Ferreira, Valentina Giovinco, Anthony Harrison, Marco Morrone, Nicola Solieri, Anke Stoeltzel, et al. MuCol WP8 Cooling Cell Workshop January 2024

MuCol

Introduction

19/01/2024 Cooling Cell Workshop - J.A. Ferreira 2

Final Cooling

- ❑ Absorber → H² best candidate
- \Box For liquid/gas absorber \rightarrow Vacuum windows are required ❑ Windows may be required even for solids (thermal desorption) [1]
- Low energy \rightarrow Thin windows

Parameters: ➢ 20 to 5 MeV cooling ➢ 4e12 muons/pulse > 5 Hz repetition rate \triangleright σ _{RMS}=0.6 mm

19/01/2024 Cooling Cell Workshop - J.A. Ferreira 3

Final Cooling

\Box At 5 MeV \rightarrow Be range <1.5 mm [3]

❑ Conventional windows typical at CERN 0.254 mm >15% muon range

Thin windows

- Possible materials: $-$ Be, Si₃N₄, C, SiC, etc.?
- To limit beam perturbation <15µm (approx. <1% of power absorbed in the window for 3keV/µm)
- Thin window \rightarrow Small window \rightarrow 10× σ_{RMS}

$$
\left\langle -\frac{dE}{dx} \right\rangle_{\text{electronic}} = K \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 Q_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} + \frac{1}{8} \frac{Q_{\text{max}}^2}{\left(\gamma M c^2\right)^2} \right] + \Delta \left| \frac{dE}{dx} \right|
$$

Thin windows: Be

❑ Well known material

- \square As thin as 8 µm in commercial x-ray windows[5]
- ❑ Aperture 7 mm
- \square \triangle P > 1 bar
- ❑ Commercial, but no many suppliers

Figure 1 Typical Assembly of Beryllium Window

Figure 2 Conflat Flange Geometry

Thin windows: C

- ❑ Thickness <1 µm
- ❑ Different options: Graphenic carbon [6] or diamond [7]
- ❑ Research phase

Fig. 4. Measured thickness dependent burst strength of fabricated GC transmission windows with a diameter of 7 mm.

Fig. 2. (a) sketches the fabrication process of the transmission window. (b) shows a top view image of a fabricated GC window. (c) depicts a TO8 housing with a GC window glued into the top of the housing

Fig. 4. SEM picture of the diamond film $345[*]$.

 $rac{1}{2}$

Thin windows: SiC

❑ Thickness <1 µm

❑ Bulk material has excellent mechanical properties

❑ No many commercial suppliers [8]

RIE of Silico

Thin windows: Si₃N₄

- ❑ Commercially available: Xray windows i.e. [9]
- ❑ Thickness <1 µm
- ❑ They can work at cryogenic temperature [10]
- ❑ Bulk material has excellent mechanical properties [11]
- \square Expected $\triangle T$ at the conditions described before estimated 460 \overline{K}
- ❑ Stress during the pulse reasonable level according to first rough estimate.

Maximum differential pressure v membrane size

 $\sqrt{30}$ nm 50 nm \cdot 100 nm 200 nm

500 nm

1000 nm

- \Box 1 µm 6×6mm window \rightarrow >5 bar pressure (tested in lab)
- ❑ Thermal cycles at 77K

19/01/2024 Cooling Cell Workshop - J.A. Ferreira 9

Test of 1 μ m thick Si_3N_4 window in HiRadMat (Baby-SMAUG)

Brightness $\equiv \frac{N_b I_b}{\sigma^2 + \sigma^2}$ $\frac{N_b I_b}{\sigma_x^2 + \sigma_y^2} p^+ / mm^2$ [12]

- ❑ Test one membrane irradiated under vacuum
- \Box 4×10¹² muons/pulse at 5MeV $\sigma_{RMS}=0.6$ mm \rightarrow Maximum power deposited 0.89 kJ/cm³
- \Box p⁺ equivalent with $\sigma_{RMS}=0.25$ mm at 440 GeV \rightarrow 3.2×10¹² p⁺/pulse that corresponds to **2.6×10¹³ p ⁺/mm²**
- ➢ Objective: Few shots increasing intensity up to failure. Optics Fp2 0.25 mm

Results

❑Leak rate < 5×10-10 mbar×l/s (both glassy carbon and Si_3N_4 leak tight) ❑Not visible damage while under vacuum \Box Indentation visible after venting Si₃N₄.

Results

19/01/2024 Cooling Cell Workshop - J.A. Ferreira 12

Experimental proposal

- ❑ Continuation of HRMT-59 (SMAUG)
- ❑ Test Nb-Ti coated PF-60 diffusion-bonded windows and Si_3N_4
- ❑ Brightness range between 288 bunches 1.2×10¹¹ ppb $\sigma_{RMS}=0.4$ mm (5 and 50 pulses)
- ❑ Highest possible brightness fp2 0.25 mm, 288 bunches $>2.1\times10^{11}$ ppb (5 and 50 pulses)
- \Box Test fp2 0.25 mm >2.1×10¹¹ ppb 72+72 bunches with separations 0.22 and 23 μs

Modifications:

- $DN100 \rightarrow$ Glue 6 Si₃N₄ windows (10×10 mm frame)
- \triangleright Low vacuum (10⁻² mbar) \rightarrow Pressure difference even with large leaks
- Remotely operated isolation valves
- He/O₂ (Heliox). Oxidation and high sensitivity using leak detector (20% O₂ 80% He) \rightarrow Early detection of any failure
- Pirani gauges \rightarrow Leak rate by accumulation
- Remote control: Leak detector, valves and gauges

- \square Mechanical characterization of Si₃N₄ membranes at different temperatures (from cryogenic to high temperature) \rightarrow Use inputs to better validate thermomechanical models
- \square For thin membranes Bulge testing is the easiest setup. Measurements of Si_3N_4 membranes at room temperature in [13]

 $\frac{1}{2}$

 $\frac{1}{2}$

- ❑ Pressure tests were performed on square membranes with the following geometry:
	- ❑ Si frame: 10 mm x 10 mm, thickness=200 µm,
	- ❑ Si3N⁴ membrane: 6mm x 6mm, thickness=1000nm.
- ❑ Leak-tight tests of the bulge test setup were successfully performed.
- ❑ Different glues were used to bond the sample to the copper flange. This considerably affects the mechanical response of the membrane against the maximum pressure it can withstand.
- ❑ Two different ways to mount the membrane (positive and negative orientation in the figure) were investigated.
- ❑ Results from pressure tests are shown in the table:

 $\overline{1}$

للتسابير

Si_3N_4 windows

- ❖ Low energy muons would require very thin windows to limit the impact of the window itself
- \div Si₃N₄ windows seem a good candidate:
	- ❖ Cheap and available
	- ❖ Good properties already with on the shelf products
	- ❖ Compatible with bright beams
	- ❖ Compatible at cryogenic temperature
- ❖ Thermomechanical characterization is ongoing, and more beam tests are planned
- ❖ The window should separate vacuum from the absorber, at low energy ideally hydrogen. The configuration of the absorber will define the maximum differential pressure the window should sustain

Absorber

$$
\epsilon_{min,N} \propto \frac{E}{BL_R(dE/ds)} [2]
$$

- \Box H₂ best absorber material (out of the scope of MuCol?)
- ❑ What is the required density?
- ❑ Which length can we expect?
- ❑ What is the effect on the window?

Liquid H₂ power deposition Absorber length

20 → **5 MeV from [14][15]. 9.6 J, not including heat load from muon decay**

 $19/01/2024$ Cooling Cell Workshop

Summary

- ❑ Commercially available as vacuum window for x-ray transmission
- ❑ First irradiation tests showed excellent performance, well beyond the requirements
- ❑ Ongoing effort to better characterise the thermomechanical properties of the membranes at different temperatures and understand its behaviour and produce better models.
- ❑ Irradiation in proton facilities
- ❑ High density absorber required to have a short solenoid, but high power deposition \rightarrow High pressure. Compatible with thin window?
- □ Shock wave and phase change after power deposition in liquid hydrogen \rightarrow Very challenging CFD problem out of reach of commercial codes
- \square The design of the H₂ absorber will define the requirements and lifetime of the window, is this out of the scope of MuCol?
- \square Decouple window and absorber \rightarrow even thinner windows
	- ❑ Pulsed high density vapor?
	- ❑ Leidenfrost effect?
	- ❑ Staging of steps with different densities (lower at the end)

THANK YOU FOR YOUR ATTENTION!

19/01/2024 Cooling Cell Workshop - J.A. Ferreira 26

References

[1] B.M. Stechauner, Final cooling scheme for muon colliders: a door opener for future discovery machines, TU Vienna, 2021.

[2] H. Kamal Sayed, R.B. Palmer, and D. Neuffer, Phys. Rev. ST Accel. Beams **18**, 091001 (2015).

[3] AtomicNuclear [Properties \(lbl.gov\)](https://pdg.lbl.gov/2009/AtomicNuclearProperties/)

[4] D.E. Groom and S.R. Klein, Eur. Phys. J. C **15**, 163 (2000).

[5] DuraBeryllium[® Windows in](https://moxtek.com/wp-content/uploads/WIN-TECH-1001-DuraBeryllium-Windows-in-Conflat-Flanges.pdf) Conflat Flanges

[6] S. Huebner, N. Miyakawa, S. Kapser, A. Pahlke, and F. Kreupl, IEEE Transactions on Nuclear Science 62, 588 (2015).

[7] X. Ying, J. Luo, P. Wang, M. Cui, Y. Zhao, G. Li, and P. Zhu, Diamond and Related Materials **12**, 719 (2003).

[8] Silson - [Silicon Carbide](https://www.silson.com/product/silicon-carbide/)

[9] Silson - [Differential Pressure Windows](https://www.silson.com/product/pressure-windows-vacuum-windows/)

[10] P.T. Törmä, J. Kostamo, H. Sipilä, M. Mattila, P. Kostamo, E. Kostamo, H. Lipsanen, C. Laubis, F. Scholze, N. Nelms, B. Shortt, and M. Bavdaz, IEEE Transactions on Nuclear Science 61, 695 (2014).

[11] R.L. Edwards, G. Coles, and W.N. Sharpe, Experimental Mechanics **44**, 49 (2004).

[12] N. Solieri et al, TF3: Beam-Intercepting Devices final report, [EDMS 2754370](https://edms.cern.ch/document/2754370/2)

[13] B. Merle, *Mechanical Properties of Thin Films Studied by Bulge Testing* (FAU University Press, Erlangen, 2013)

[14] [Isochoric Properties for Hydrogen \(nist.gov\)](https://webbook.nist.gov/cgi/fluid.cgi?D=35.17&TLow=20.324&THigh=150&TInc=0.1&Applet=on&Digits=5&ID=C1333740&Action=Load&Type=IsoChor&TUnit=K&PUnit=bar&DUnit=mol%2Fl&HUnit=kJ%2Fmol&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm&RefState=DEF)

[15] J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, and E.W. Lemmon, Journal of Physical and Chemical Reference Data **38**, 721 (2009).

Thin windows

- ➢ Approx 1 mm stops the beam completely at 5MeV (1.3 mm for Be)
- ➢ Several candidates for thin windows
- ➢ Better characterization and evaluation required but first numbers look promising
- ➢ Measure mechanical properties (cryogenic to high temperature) for precise thermomechanical simulations. Bulge test [14] with interferometry?
- ➢ Pressure in the absorber is critical for the window definition

$$
\sigma_{cyc} \approx \frac{1}{2} \alpha E \Delta T \qquad \Delta T_{inst} = \left(\frac{dE}{dx}\right) \frac{N}{2\pi\sigma^2 \rho c}
$$

 $19/01/2024$ Cooling Cell Workshop

 Si_3N_4 Ø 7 mm 1µm at 5 MeV - 0.6 mm gaussian beam Only room temperature ambient radiation

at in the season