

CERN Beam Instrumentation Relevant to the Muon Collider Study

Inaki Ortega

MuCol WP8 Cooling Cell Workshop – 19 January 2024

Low intensity secondary beams at CERN

The NA beam lines

10¹³ protons/ions 450 GeV/c from SPS in 9.6 seconds

AD/ELENA

- 100 keV antiprotons
- 10⁷ antiprotons per bunch
- 300 ns bunch length
- 1 to 4 bunches extracted

Beam instrumentation in the EA

Scintillators

Scintillator paddle (XSCI)

Beam profile fibre monitor (XBPF)

Lead crystal calorimeters (XEMC)

Finger scintillator scanner (FISC)

Gaseous detectors

Multi-wire proportional chamber (MWPC)

Delay wire chamber (DWC)

Gas electron multiplier (GEM)

Cherenkov detectors

Cherenkov threshold counter (XCET)

Cherenkov differential counter with achromatic ring focus (CEDAR)

Secondary Emission Detectors

- Secondary emission monitors (beam intensities > 10¹⁰ particles/spill):
 - Profile & position
 - Intensity
 - Work in vacuum
- Secondary emission foils with ionising gas (intensity > 10⁷ particles/spill)
 - Intensity
- ELENA ultra-low intensity secondary emission grids (SEM Grids) (10⁷ particles/spill)
 - Profile & position
 - Work in vacuum

Notes from brainstorming session on Friday

- Challenging to extract information from the EM field of the bunch
 - May require interaction with an active material
- Some techniques might work but need R&D
 - Scintillation, silicon detectors, gaseous detectors, secondary emission, Cryogenic Current Comparator...
- Optical Transition Radiation could work to discriminate dark current electrons (β ≈ 1) from muons (β ≈ 0.8) @ 200 MeV/c
 - Strength, spectrum and angle of OTR emission depend on Lorentz factor
 - Caveat: photon yield is very low... OTR screens are typically used with higher intensity beams
- Does liquid hydrogen scintillate? Can this information be used?
- Is 1ps bunch time structure feasible?
- Could a "laser scanner" be used to remove dark current electrons?

Notes from brainstorming session on Friday

• Profile/emittance:

- Scintillating fibres \rightarrow challenging
- Silicon pixel detectors (Timepix) \rightarrow small active area will it saturate?
- Gaseous detector (wire chamber/GEM...) \rightarrow used in AD
- Scintillator/OTR screens \rightarrow is the beam intensity high enough?
- ELENA-type SEM Grids \rightarrow beam intensity?
- Scraper \rightarrow destructive
- Intensity:
 - Beam Current Transformers \rightarrow is the beam intensity high enough?
 - Scintillators \rightarrow performance must be studied
 - Secondary emission monitors with gas \rightarrow used in IRRAD/CHARM (East Area)
 - Cryogenic Current Comparator \rightarrow expensive

Notes from brainstorming session on Friday

Bunch time structure:

- We probably need some active material interacting with the beam due to the low intensities.
- Cherenkov or OTR based detector? Both have excellent timing properties.
- Energy:
 - Could Time of Flight work?
 - Electromagnetic Calorimeter \rightarrow destructive
- Beam loss monitors outside the cooling cell may be pointless (muon energy, absence of secondary particles showers) -> rely on intensity monitors

Conclusion: challenging specifications and beam parameters. Requires careful study of all available BI detection techniques.

Feasibility studies and simulations are required for all the techniques shown. Extensive R&D is needed for some of them.

home.cern