Cosmological Constraints on Neutrinos

Isabel M. Oldengott Bielefeld University

20-25 October, 2024 Rencontres de Blois

 \sim 1 MeV: neutrino decoupling **→ cosmic neutrino background:** Temperature: $T_{\nu}^0 = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}^0 = 1.95 \,\mathrm{K}$ Number density: $n_{\nu}^{0} \approx 112 \,\mathrm{cm}^{-3}$ Energy density: $\rho^{rad} \equiv \left[1 + \frac{7}{8}\left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right]\rho_{\gamma}$

Standard: $N_{\text{eff}} = 3.044$

(Drewes et al. 2024, Jackso & Laine 2023)

Ways to enhance N_{eff} **:**

non-standard temperature, number of species, chemical potentials, distribution, etc.

Assumptions about neutrinos made in ΛCDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum

• They have a temperature of
$$
T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}
$$

• There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Assumptions about neutrinos made in ΛCDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum

• They have a temperature of
$$
T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}
$$

• There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

 $1/9$

What can cosmology teach us about neutrinos?

$$
\rightarrow
$$
 Let's first look at N_{eff} and Σm_v

Early times: weak interactions

 $p + \bar{\nu}_e \leftrightarrow n + e^+$ $p + e^- \leftrightarrow n + \nu_e$ $n \leftrightarrow p + e^- + \bar{\nu}_e$

 $\rightarrow \mathcal{O}(1 \,\text{MeV})$ Early times: weak interactions freeze-out $\left(\frac{n}{p}\right)_{\text{eq}} \approx e^{-(m_{\text{n}}-m_{\text{p}})/T}$ $n \leftrightarrow p + e^- + \bar{\nu}_e$

 \rightarrow ²H, ³H, ³He, ⁴He etc.

Recombination \rightarrow Universe gets transparent to photons **(Redshifted) photo of the early Universe**

Large Scale Structure

Free-streaming suppresses the growth of structure below the free-streaming length

Large Scale Structure

Free-streaming suppresses the growth of structure below the free-streaming length

Large Scale Structure

Free-streaming suppresses the growth of structure below the free-streaming length

Whenever we talk about the impact of neutrino masses $\rightarrow \Omega_{\Lambda} + \Omega_{\rm b} + \Omega_{\rm cdm} + \Omega_{\nu} = 1$

What else can we learn?

Assumptions about neutrinos made in ΛCDM

- **Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)**
- Neutrinos follow a relativistic Fermi-Dirac spectrum
- They have a temperature of $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Non-standard neutrino interactions

General expected signal from (non-standard) neutrino interactions:

suppression of free-streaming \rightarrow suppression of anisotropic stress

 \rightarrow enhancement of neutrino (perturbed) energy density *(Hannestad 2005)*

 \rightarrow enhancement of temperature anisotropies

+ free-streaming induces a small (but very characteristic) constant phase shift $\frac{14}{23}$ / 23

Different thermal histories depending on model parameters Consider the effective Lagrangian: $\mathcal{L}_{int} = g_{ij} \bar{\nu}_i \nu_j \phi$

Different thermal histories depending on model parameters Consider the effective Lagrangian: $\mathcal{L}_{int} = g_{ij} \bar{\nu}_i \nu_j \phi$ **I)Massive scalar** Effective four-Fermi-like coupling $G_{\text{eff}} = \frac{g^2}{m_A^2}$ → **neutrino self-interactions** Interaction rate: $\Gamma \sim G_{\text{eff}}^2 T^5$ **Delayed neutrino decoupling Comparison to Hubble expansion rate:**

Different thermal histories depending on model parameters Consider the effective Lagrangian: $\mathcal{L}_{int} = g_{ij} \bar{\nu}_i \nu_j \phi$ **I)Massive scalar II) Massless scalar** Effective four-Fermi-like coupling $G_{\text{eff}} = \frac{9}{2}$ (Active) neutrino decaying into (active) → **neutrino self-interactions** Interaction rate: $\Gamma \sim G_{\text{eff}}^2 T^5$ **light neutrino plus invisible scalar** Lorentz-boosted decay rate: $\Gamma_{\text{dec}} \sim g^2 \frac{m_{\nu}^2}{T_{\text{eq}}}$ **Delayed neutrino decoupling Recoupling Scenario Recoupling scenario Comparison to Hubble expansion rate: Comparison to Hubble expansion rate:** *(Barenboim, IMO et al. 2021;*

Chen, IMO et al. 2022)

15 / 23

Sterile neutrino interactions *(Forastieri et al. 2017, Archidiacono at al. 2014&2015&2016)* **Recent summary of different type of interactions:** *(Taule et al. 2022)*

15 / 23

Beyond N_{eff} and m_y: Non-standard interactions

The devil is in the details: Describing the impact of non-standard interactions can be a very challenging task (on both levels: analytically and numerically)...

Beyond N_{eff} and m_y: Non-standard interactions

The devil is in the details: Describing the impact of non-standard interactions can be a very challenging task (on both levels: analytically and numerically)...

Neutrino self-interactions

Cyr-Racine et. al. 2013, IMO et al. 2014, Lancaster 2017, IMO et al. 2017, Barenboim, IMO et al. 2019, Kreisch et al. 2019, A. Mazumdar et al. 2020, A. Das et al. 2020 , Kreisch et al. 2022, S. R. Choudhury et al. 2022 …

Beyond N_{eff} and m_y: Non-standard interactions

The devil is in the details: Describing the impact of non-standard interactions can be a very challenging task (on both levels: analytically and numerically)...

Neutrino self-interactions

Cyr-Racine et. al. 2013, IMO et al. 2014, Lancaster 2017, IMO et al. 2017, Barenboim, IMO et al. 2019, Kreisch et al. 2019, A. Mazumdar et al. 2020, A. Das et al. 2020 , Kreisch et al. 2022, S. R. Choudhury et al. 2022 …

→ accompanied by bimodality in some other parameter degeneracies...

What else can we learn?

Assumptions about neutrinos made in ΛCDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- **Neutrinos follow a relativistic Fermi-Dirac spectrum**
- They have a temperature of $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Beyond $\rm N_{\rm eff}$ and $\rm m_{_{\rm v}}$

Non-standard relic neutrino distributions *(IMO et al. 2019)*

Impact on cosmological observables? \rightarrow degenerate with \blacktriangleright

 \rightarrow no unique imprint: **intrinsically degenerate with** $\mathbf{\Sigma m}_{\text{v}}$ and \mathbf{N}_{eff}

Cosmological neutrino mass bound strongly depends on our assumption about the relic neutrino distribution

(here: relaxation about $\approx 100\%$)

→ See also J. Alvey at al., arXiv: 2111.12726

Conclusions

- Constraining non-standard neutrino interactions
- Found that cosmological neutrino mass bound can be relaxed by enhancing average momentum

Assumptions about neutrinos made in ΛCDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum
- They have a temperature of $T_{\nu}=(4/11)^{1/3}T_{\gamma}$

assumptions

• There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Bounds on N_{eff} and $\sum m$ **v** : $\sum m_{\nu} < 0.072 \text{ eV}$ (Planck 2018 + DESI 2024) $\Delta N_{\text{eff}} = -0.10 \pm 0.21$ (68% CL) *(BBN)* $N_{\text{eff}} = 2.92^{+0.36}_{-0.37} (95\% \text{ CL})$ (Planck 2018)