Diffuse Supernova Neutrino Background

Laboratoire Leprince-Ringuet

École Polytechnique – IP Paris

24 October 2024

35th Rencontres de Blois

Core-collapse supernovae and neutrino emission

- Massive stars ($> 8M_{\odot}$) result in **core-collapse supernovae** (CCSNe) at the end of their lives.
- CCSNe leave behind either a **neutron star** or a **black hole** depending on the ability of the outgoing shockwave not to fall back inward.
- Local CCSNe are rare, but one CCSN happens somewhere in the observable universe ∼**1/sec**.
- Details of CCSN mechanism are **not fully understood** and **3D simulations are challenging**.
- About **99% of all energy** released is in the form of 10^{58} neutrinos.
- Neutrinos from all such CCSNe should form an ambient sea of particles, the **Diffuse Supernova Neutrino Background** (DSNB).

What is the Diffuse Supernova Neutrino Background?

• In a general modeling approach for the DSNB, we need the CCSN rate, the ν emission flux, and expansion.

What is the Diffuse Supernova Neutrino Background?

- In a general modeling approach for the DSNB, we need the CCSN rate, the ν emission flux, and expansion.
- DSNB predictions are dependent on a variety of **parameters** (e.g., the **star formation rate** in the universe or the fraction of supernovae that form **black holes**).
- We are then capable of probing aspects across **astrophysics**, **particle physics**, and **cosmology**.

$$
\frac{d\Phi}{dE} = \iint R_{SN}(z, M) \left[\frac{dF(E(1+z), M)}{dM} \right] \left| c \frac{dt}{dz} \right| dz dM
$$

Supernova rate

- On cosmic timescales, we can **directly relate** the **CCSN rate to the star formation rate**.
- **Traditional methods** to measure star formation rates based on **assumptions about** their relationship to **luminosity in a given star-forming region** of a galaxy.
- Star formation rates can then **heavily depend on assumptions of mass distributions of stars formed** (initial mass function or "**IMF**").

$$
\frac{d\Phi}{dE} = \iint R_{SN}(z, M) \left[\frac{dF(E(1+z), M)}{dM} \right] \left| c \frac{dt}{dz} \right| dz dM
$$

Supernovarate

- On cosmic timescales, we can **directly relate** the **CCSN rate to the star formation rate**.
- **Traditional methods** to measure star formation rates based on **assumptions about** their relationship to **luminosity in a given star-forming region** of a galaxy.
- Star formation rates can then **heavily depend on assumptions of mass distributions of stars formed** (initial mass function or "**IMF**").
- In addition, the **absolute normalization of star formation** is **uncertain**, which is directly proportional to DSNB flux.

J.J. Ziegler et al., MNRAS 517 (2022) 2471

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 8

- The **landscape of CCSNe** is **difficult to simulate** and can significantly vary the emitted neutrino spectra.
- **Differences** between **neutron star-forming CCSNe** and **black hole-forming CCSNe** alter the DSNB.

D. Kresse et al., ApJ 909 (2021) 169

- The **landscape of CCSNe** is **difficult to simulate** and can significantly vary the emitted neutrino spectra.
- **Differences** between **neutron star-forming CCSNe** and **black hole-forming CCSNe** alter the DSNB.
- **Astrophysical uncertainties** such as the **neutron star mass limit** influence the CCSN collapse and emission.

$$
\frac{d\Phi}{dE} = \iint R_{SN}(z, M) \left[\frac{dF(E(1+z), M)}{dM} \right] \left| c \frac{dt}{dz} \right| dz dM
$$
\n
$$
2 \times 10^{56}
$$
\n
$$
2 \times 10^{56}
$$

- The **landscape of CCSNe** is **difficult to simulate** and can significantly vary the emitted neutrino spectra.
- **Differences** between **neutron star-forming CCSNe** and **black hole-forming CCSNe** alter the DSNB.
- **Astrophysical uncertainties** such as the **neutron star mass limit** influence the CCSN collapse and emission.
- **Neutron propagation** through the dense explosion can **swap flavors in non-trivial ways** [talk MC Volpe].

A. Priya and C. Lunardini, JCAP 11 (2017) 031 $M = 25M_{\odot}$

- Since CCSNe at **non-zero redshift contribute** to the DSNB, we are **sensitive to cosmological expansion**.
- Can consider redshifts up to $z = 5$, but usual searches are limited to above around 10 MeV ($z \leq 2$ then).

D. Kresse et al., ApJ 909 (2021) 169

Many possibilities for modeling the DSNB

$$
\frac{d\Phi}{dE} = \iint R_{SN}(z, M) \left[\frac{dF(E(1+z), M)}{dM} \right] \left| c \frac{dt}{dz} \right| dz dM
$$

- This parameterization is one of many, and others can include more nuanced or different contributions.
- Globally, **uncertainties on star formation rates** lead to an **uncertain normalization** on the DSNB flux.
- The **mixture** of neutron star-forming and black hole-forming CCSNe alters the **DSNB spectral shape**.
- A first detection of the DSNB will be focused on the normalization with sensitivity to spectral shape later.
- Where do we stand now in experimental searches...?

Abe et al., Phys. Rev. D 104 (2021) 122002

Current status of experimental searches for DSNB

nature λ news λ article

NEWS 09 July 2024

Huge neutrino detector sees first hints of particles from exploding **stars**

Super-Kamiokande results highlighted
in Nature News after Neutrino2024

ouper-Kamiokande results highlighted
in Nature News after Neutrino2024!!!

Japan's Super-Kamiokande observatory could be seeing evidence of neutrinos from supernovae across cosmic history.

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 15

By Davide Castelvecchi

Super-Kamiokande: World-leading water Cherenkov experiment

- Pure water phases I-IV: *PRD* **104** (2021) 122002
- First Gd results phase VI: *ApJL* **951** (2023) 2, L27
- **Gadolinium-doped** water since 2020 for easier neutron capture identification (SK-VI/VII)!

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 16

Super-K DSNB target interaction channel: Inverse beta decay

- Atmospheric neutrino interactions can produce **multi-cone prompt events**.
- Heavy charged leptons near the Cherenkov threshold have **small opening angles**.
- θ_c : Opening angle assuming one cone.

(IBD-like single-cone $\theta_c \approx 42^{\circ}$)

$(\mu/\pi$ -like single cone near threshold)

- Atmospheric neutrino interactions can produce **multi-cone prompt events**.
- Multiple scattering goodness (MSG): a repurposed variable capable of **distinguishing between likely single- and multi-cone events**.

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 20

- The **Boosted Decision Tree (BDT)** neutron tagging tool was used in the 2021 DSNB paper and was updated for SK-Gd.
- The **Neural Network (NN)** tool has been introduced as a new technique in SK-Gd for the DSNB analysis.
- **Both** the BDT and the NN **achieve less than 0.1% mistag rates** for neutron tagging **efficiencies above 60%** in SK7.

Super-K DSNB analysis: Before and after cuts

Super-K DSNB analysis: Final samples (spectral fit)

$$
\mathcal{L}(\{N_j\}) = e^{-\sum_{j=1}^{N_{type}} N_j} \prod_{i=1}^{N_{obs}} \sum_{j=1}^{N_{type}} N_j \text{PDF}_{j}^{(r)}(E_i)
$$

- Perform **unbinned extended maximum likelihood fit** on six categories of events $(N_{true} = 6)$ (not same as 6 fit regions).
- **Without systematic uncertainties** on the PDFs, the fit would **only vary the six** .

$$
\mathcal{L}(\{\dots\}) = e^{-\sum_{j=1}^{N_{type}} N_j} \prod_{i=1}^{N_{obs}} \sum_{j=1}^{N_{type}} N_j PDF_j^{(r)}(E_i)
$$

- Perform **unbinned extended maximum likelihood fit** on six categories of events $(N_{true} = 6)$ (not same as 6 fit regions).
- **Without systematic uncertainties** on the PDFs, the fit would **only vary the six** .
- **With systematic uncertainties**, the **PDF shapes can vary** with free parameters.

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 25

$$
\mathcal{L}(\{\dots\}) = e^{-\sum_{j=1}^{N_{type}} N_j} \prod_{i=1}^{N_{obs}} \sum_{j=1}^{N_{type}} N_j PDF_j^{(r)}(E_i)
$$

- Perform **unbinned extended maximum likelihood fit** on six categories of events $(N_{true} = 6)$ (not same as 6 fit regions).
- **Without systematic uncertainties** on the PDFs, the fit would **only vary the six** .
- **With systematic uncertainties**, the **PDF shapes can vary** with free parameters.
- The fit has **no explicit constraint on the** individual N_j (i.e., a shape-only analysis).

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 26

$$
\mathcal{L}(\{\dots\}) = e^{-\sum_{j=1}^{N_{type}} N_j} \prod_{i=1}^{N_{obs}} \sum_{j=1}^{N_{type}} N_j PDF_j^{(r)}(E_i)
$$

- Perform **unbinned extended maximum likelihood fit** on six categories of events $(N_{type} = 6)$ (not same as 6 fit regions).
- **Without systematic uncertainties** on the PDFs, the fit would **only vary the six** .
- **With systematic uncertainties**, the **PDF shapes can vary** with free parameters.
- The fit has **no explicit constraint on the** individual N_j (i.e., a shape-only analysis).
- Here is an example of one post-fit (SK-IV) with all 6 fit regions.

Super-K DSNB analysis: Spectral analysis results

- SK-IV/VI/VII combined spectral analysis results in **2.3 rejection of BG-only** hypothesis.
- This is **model-dependent**, but all DSNB models tested show very similar results.

R. Rogly, Neutrino 2024 proceedings

Super-K DSNB analysis: Spectral analysis results

- SK-IV/VI/VII combined spectral analysis results in **2.3 rejection of BG-only** hypothesis.
- This is **model-dependent**, but all DSNB models tested show very similar results.
- A **large part of the best-fit strength comes from the pure-water SK-IV** phase.
- In parallel, can **perform a binned analysis with background-only hypothesis test** (DSNB model-independent).

R. Rogly, Neutrino 2024 proceedings

Super-K DSNB analysis: Final sample (binned analysis)

- Data and Monte Carlo simulation predictions are **simply stacked** for all three periods for visualization.
- **Sideband regions** (below 12 MeV and above 30 MeV) show good data/MC agreement. **MeV** and $\frac{10}{\pi}$ and *(mask signal* $\frac{10}{\pi}$ and *mask signal*

- Data and Monte Carlo simulation predictions are **simply stacked** for all three periods for visualization.
- **Sideband regions** (below 12 MeV and above 30 MeV) show good data/MC agreement.
- **No significant excess** observed in any energy bin with smallest p-value $p = 0.18$.

- Data and Monte Carlo simulation predictions are **simply stacked** for all three periods for visualization.
- **Sideband regions** (below 12 MeV and above 30 MeV) show good data/MC agreement.
- **No significant excess** observed in any energy bin with smallest p-value $p = 0.18$.
- The **tightest observed limits** on the DSNB were set.

Super-K DSNB analysis: Binned analysis projections

- Data and Monte Carlo simulation predictions are **simply stacked** for all three periods for visualization.
- **Sideband regions** (below 12 MeV and above 30 MeV) show good data/MC agreement.
- **No significant excess** observed in any energy bin with smallest p-value $p = 0.18$.
- The **tightest observed limits** on the DSNB were set.
- We are in the **most sensitive Super-K phase** to date with more data and other experiments to come…

The experimental searches for DSNB are multiplying

- There are a **variety of experiments** between now and the beginning of the 2030s that will be sensitive to the DSNB.
- **Super-Kamiokande** will continue through this decade.
- **Hyper-Kamiokande** is under construction for start in 2027.
- **JUNO** (Jiangmen Underground Neutrino Observatory) is set to start data-taking next year [talk M. Lecocq].
- **DUNE** (Deep Underground Neutrino Experiment) will come online in phases with the first happening at the end of this decade.
- **LZ** is even in the game [talk Q. Xia]!

JUNO: Jiangmen Underground Neutrino Observatory

- The **Jiangmen Underground Neutrino Observatory** (JUNO) is in its final stages of construction in Guangdong province, China.
- It will be a **20 kton liquid scintillator** detector under 700 meters of rock (1800 meters w.e.).
- The **inner diameter** of the liquid scintillator region will measure **35.4 meters**.
- Highly effective energy reconstruction will be targeted with **almost 18,000 20-in. PMTs** and **another 25,600 3 in. PMTs** filling the gaps between.
- The **outer cylinder** serves as a water Cherenkov **veto** with 2,400 20-in. PMTs.
JUNO: First backgrounds to consider

- For its DSNB analysis, JUNO will have a few categories of backgrounds.
	- **Reactor** \overline{v}_e : The IBD interactions of reactor neutrinos **exactly mimics the DSNB signal** and **sets the energy threshold at 12 MeV**.
	- Atmospheric \overline{v}_e : These undergo IBD interactions to **exactly mimic the DSNB also**, and they **limit the search from above**.
	- **Spallation**: Production of Li-9 and He-8 by cosmic ray muons above 12 MeV can be **largely removed by muon ID** in the veto.

JUNO: Fast neutron background removal from spallation

- For its DSNB analysis, JUNO will have a few categories of backgrounds.
	- **Reactor** \overline{v}_e : The IBD interactions of reactor neutrinos **exactly mimics the DSNB signal** and **sets the energy threshold at 12 MeV**.
	- Atmospheric \overline{v}_e : These undergo IBD interactions to **exactly mimic the DSNB also**, and they **limit the search from above**.
	- **Spallation**: Production of Li-9 and He-8 by cosmic ray muons above 12 MeV can be **largely removed by muon ID** in the veto.
	- **Fast neutrons**: **Untagged cosmic ray muons** can generate a prompt signal with a delayed neutron capture – **remove with volume cuts**.

Atmospheric neutrino neutral-current interaction removal

- For its DSNB analysis, JUNO will have a few categories of backgrounds.
	- **Reactor** \overline{v}_e : The IBD interactions of reactor neutrinos **exactly mimics the DSNB signal** and **sets the energy threshold at 12 MeV**.
	- Atmospheric \overline{v}_e : These undergo IBD interactions to **exactly mimic the DSNB also**, and they **limit the search from above**.
	- **Spallation**: Production of Li-9 and He-8 by cosmic ray muons above 12 MeV can be **largely removed by muon ID** in the veto.
	- **Fast neutrons**: **Untagged cosmic ray muons** can generate a prompt signal with a delayed neutron capture – **remove with volume cuts**.
	- **Atmospheric neutral-current**: **Interactions on C-12** can lead to beta decays with a threepart signal – **use pulse shape discrimination**.

JUNO DSNB after reduction steps

- Again, the search window is limited to [12, 30] MeV.
- Final energy spectra after all reduction steps demonstrate **orders of magnitude reduction of total backgrounds**.
- Reference model has **about 1 DSNB event-per-MeV** (15 MeV blackbody with $f_{BH} = 0.27$) in final sample.
- How does this compare to Super-K?

Comparison of Super-K and JUNO sensitivity to DSNB

- We can try to **compare** the projected **JUNO** sensitivity for DSNB to that of **Super-K**.
	- After **10 years of JUNO data-taking**, we can expect **comparable sensitivity to SK-IV** limits from 2021 when **looking above 20 MeV**.

Comparison of Super-K and JUNO sensitivity to DSNB

- We can try to **compare** the projected **JUNO** sensitivity for DSNB to that of **Super-K**.
- After **10 years of JUNO data-taking**, we can expect **comparable sensitivity to SK-IV** limits from 2021 when **looking above 20 MeV**.
- Above 16 MeV, **1yr Hyper-K** ≈ **8yr Super-K**.

Comparison of Super-K and JUNO sensitivity to DSNB

- We can try to **compare** the projected **JUNO** sensitivity for DSNB to that of **Super-K**.
- After **10 years of JUNO data-taking**, we can expect **comparable sensitivity to SK-IV** limits from 2021 when **looking above 20 MeV**.
- Above 16 MeV, **1yr Hyper-K** ≈ **8yr Super-K**.
- We can plot the **projected sensitivity of Super-K** for **all neutron-tagging periods until 2027**.
- Once more, the **high-energy limits** remain highly **comparable**.
- **JUNO is expected to better** than Super-K (and then Hyper-K) **at lower energies** from its background reduction.
- **JUNO** and **Super-K/Hyper-K** searches are expected to be **complementary** in this way.

Non-standard and "exotic" physics with the DSNB

• Once we have a DSNB detection, what **other new, exciting physics** is possible?

DSNB with neutrino non-radiative decay

- Imagine a scenario of **neutrino nonradiative decay** for which heavier states can decay into lighter states along with a (nearly) massless scalar.
- **Three limiting scenarios can be identified** as quasi-degenerate (QD), strongly hierarchy (SH) in normal ordering and then inverted ordering.
- In **normal ordering**, the QD case for short enough lifetimes causes an **increase in DSNB flux at Super-K** from "heavy" flavor states decaying into the "lighter" $\bar{v}_e/v_e.$
- In **inverted ordering**, short enough lifetimes lead to **high suppression of DSNB flux at Super-K** from "heavy" $\bar{\nu_e}$ decaying into "lighter" $\nu_\tau/\bar{\nu_\tau}.$

DSNB with resonant interactions with dark matter

• Consider a **general coupling of neutrinos to dark matter** through $g_i v_i^\dagger \phi N$ for ν masses i .

- For significant effects to be possible on the DSNB, the requirement of ϕ and N to be of the order of 10 MeV makes only the v_{τ} coupling **significant** for which $q_i \propto U_{\tau i}$.
- N_e and N_μ couplings can be ignored due to strict constraints of meson decay experiments.
- We can consider a situation in which a resonant energy of ∼20 MeV exists through which DSNB neutrinos can be absorbed.
- Depending on the exact model, a **depletion in DSNB flux occurs in Hyper-K** at and below the resonant energy of 20 MeV.

Y. Farzan and S. Palomares-Ruiz, JCAP 06 (2014) 014

DSNB with sterile oscillation, wave-packet considerations

A. de Gouvêa et al., PRD 102 (2020) 123012

- Another "exotic" scenario is possible when probing the DSNB for new physics.
- In a situation where neutrinos are pseudo-Dirac (i.e., actually Majorana but largely preserve Dirac behavior), there can be **non-trivial active-sterile neutrino oscillations** with extremely small mass-squared differences.
- Additionally, wave packet sizes σ_x can play a crucial role in the mixture of states arriving at Earth from the DSNB.
- In this picture, the **spectral shape can be quite different** from a DSNB predicted by the Standard Model.

DSNB summary and outlook

- The **Diffuse Supernova Neutrino Background** (DSNB) is a never-before-seen source of astrophysical neutrinos.
- To date, the most **sensitive experiment is Super-Kamiokande** with its most recent results presented at the Neutrino 2024 conference in Milan, Italy.
- **Next-generation experiments** like Hyper-Kamiokande, the Jiangmen Underground Neutrino Observatory (JUNO), and the Deep Underground Neutrino Experiment (DUNE) show **promising sensitivity** to the DSNB as well.
- **Several uncertainties** dominate theoretical calculations for DSNB flux, such as the **star formation history** and the **average neutrino emission spectra** for supernovae.
- A DSNB signal could **probe new physics** such as **neutrino non-radiative decay**, interactions with **dark matter**, and presence of **sterile neutrinos**.

Selected DSNB references (1/2)

- Super-K DSNB searches
	- **Review of diffuse supernova neutrino background**
		- M. Harada, Neutrino 2024 proceedings (**2024**)
	- **New limits on the low-energy astrophysical electron antineutrinos at SK-Gd experiment**
		- ADS et al., Neutrino 2024 proceedings (**2024**)
	- **Diffuse Supernova Neutrino Background Search at Super-Kamiokande** K. Abe et al., PRD 104 (2021) 122002
	- **Search for Astrophysical Electron Antineutrinos in Super-Kamiokande with 0.01% Gadolinium-loaded Water** M. Harada et al., ApJL 951 (**2023**) 2, L27
	- **Diffuse Supernova Neutrino Background Search at Super-Kamiokande** K. Abe et al., PRD 104 (2021) 122002
- Other experimental searches for DSNB
	- **Hyper-Kamiokande Design Report**
		- K. Abe et al., arXiv:1805.04163 (2018)
	- **Prospects for detecting the diffuse supernova neutrino background with JUNO**
		- A. Abusleme et al., JCAP 10 (2022) 033
	- **Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background** K. Møller et al., JCAP 05 (2018) 066
	- **Prospects for Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO** Y.F. Li et al., Universe 8 (2022) 181

Selected DSNB references (2/2)

- DSNB as a probe (continued)
	- **Fundamental physics with the diffuse supernova background neutrinos**
		- A. de Gouvêa et al., PRD 102 (2020) 123012
	- **Neutrino non-radiative decay and the diffuse supernova neutrino background** P. Ivañez-Ballesteros and M.C. Volpe, PRD 107 (**2023**) 023017
	- **Dips in the diffuse supernova neutrino background** Y. Farzan and S. Palomares-Ruiz JCAP 06 (2014) 014
	- **Diffuse neutrino supernova background as a cosmological test**
		- J. Barranco et al., J. Phys. G 45 (2018) 055201
- DSNB ingredients
	- Non-Universal Stellar Initial Mass Functions: Large Uncertainties in Star Formation Rates at $z \approx 2 4$ and Other Astrophysical Probes J.J. Ziegler et al., MNRAS 517 (2022) 2471-2484
	- **Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background** D. Kresse et al., ApJ 909 (2021) 169
	- **Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the O(10) kt scale**
		- A. Priya and C. Lunardini, JCAP 11 (2017) 031
- Gd-loading
	- **First gadolinium loading to Super-Kamiokande** K. Abe et al., J. NIMA 1027 (2022) 166248
	- **Second gadolinium loading to Super-Kamiokande** K. Abe et al., J. NIMA 1065 (**2024**) 169480

Backup

[Super-K DSNB analysis details](#page-51-0)

[More JUNO/SK sensitivity studies](#page-60-0)

[DUNE DSNB external study](#page-63-0)

[Neutrino propagation in CCSNe](#page-66-0)

Super-K DSNB analysis details

([backup](#page-50-0) page)

 $("1st reduction")$ Data Quality

- Only keep events that are **well reconstructed** by BONSAI (bsgood>0.5).
- Event **reconstruction becomes difficult near the walls** he detector (dwall>200cm).
- **Radon contamination** is concentrated near the detector walls (dwall+effwall).
- Focus on **events without OD activity** that

- Spallation **isotopes with longer half-lives are more difficult to reject** since it is harder to associate them to a parent muon.
- Isotopes without neutrons can be **largely rejected when tagging neutron** captures.
- **Li-9** produces a neutron in an IBD-like signal.

- Remove **events within 1 ms** a muon passing through the tank (time cut).
- Remove **events within 4 m** to a low-energy event (multiple-spallation).
- Remove events identified within/close to a "**neutron cloud**" created by passing muons.
- Apply a set of energy-dependent **box cuts** and **spallation likelihood cuts**.

- Atmospheric neutrino interactions can produce **multi-cone prompt events**.
- Heavy charged leptons near the Cherenkov threshold have **small opening angles**.
- θ_c : Opening angle assuming one cone.

- IBD events will have **low PMT activity before the main prompt peak**, unlike some double-peak atmospheric neutrino backgrounds (maxpre).
- **/ decays** can be tagged as "**decay electrons**" (nmue).
- Heavy charged leptons will deposit **more charge-per-PMT** than IBD at higher energies (q50/n50).
- These particles will also create **clearer Cherenkov rings** than lighter e^{\pm} (L_{clear}).

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 59

 $N_{acc,i} = f_{\text{misID},i} \Delta N_i$ (prediction for after neutron tagging)

SK-VII IBD signal efficiency after successive reduction steps

• The addition of Gd in each **SK-Gd phase significantly improves** the final IBD signal efficiency.

More JUNO/SK sensitivity studies

([backup](#page-50-0) page)

JUNO DSNB sensitivity

Comparison of SK-Gd and JUNO DSNB sensitivity

[•] Text

Y.F. Li et al., Universe 8 (2022) 181

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 64

DUNE DSNB external study

([backup](#page-50-0) page)

DUNE: Deep Underground Neutrino Experiment

- The **Deep Underground Neutrino Experiment** (DUNE) is a next-generation experiment between Fermilab and Sanford in the United States.
- A **40-kton liquid argon detector** is anticipated in South Dakota to receive neutrinos from Fermilab near Chicago.
- Beyond accelerator neutrino studies, DUNE will have sensitivity to plenty of other sources, including the DSNB.

Source: Fermilab National Laboratory

DUNE sensitivity to DSNB

- \bullet DUNE will be sensitive to the v_e flux from the DSNB (unlike that of \bar{v}_e for experiments like Super-K/Hyper-K/JUNO through IBD).
- **•** Target channel is v_e scattering off argon to give an electron and potassium.
- Studies are underway by the collaboration, and an **external sensitivity analysis** considered **backgrounds similar to the ICARUS** detector (also liquid argon).
- The search is **limited below by solar neutrinos** (B-8 and *hep* fluxes).
- From above, **atmospheric** v_e cover the DSNB.
- While few events are anticipated, this is a complementary search to \overline{v}_e searches.
- What else can we learn from a DSNB detection?

K. Møller et al., JCAP 05 (2018) 066

Neutrino propagation in supernovae

([backup](#page-50-0) page)

Estimating DSNB sensitivity using upper limits (throw toys)

Upper limit steps

- 1. Sample $N_{obs}(E_{rec})$ from $P(N(\mu = N_{pred}, \sigma = \delta N_{sys}))$
- 2. Sample $N_{pred}(E_{rec})$ from $P(N_{pred})$

3. Perform $N_{obs}(E_{rec}) - N_{pred}(E_{rec})$ to generate PDF of excess BG events after **many toys thrown**

4. **Integrate excess BG PDF** until reach 90% of curve to define number of events $N_{90}^{\rm limit}$ for 90% CL

5. Convert $N_{90}^{\rm limit}$ into flux limit $\boldsymbol{\phi}_{90}^{\rm limit}$

$$
\phi_{90}^{\rm limit} = \frac{N_{90}^{\rm limit}}{t \cdot N_p \cdot \bar{\sigma}_{\rm IBD} \cdot \epsilon_{\rm sig}}
$$

Phys. Rev. D 104, 122002 (2021)

SK-IV DSNB analysis results in more detail

Phys. Rev. D 104, 122002 (2021)

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 70

"Multiple Scattering Goodness" cut in Super-K DSNB analysis

([backup](#page-50-0) page)

Differences of overall NCQE from DSNB IBD signal

MSG definition

(c) Find largest candidate Identify candidate (b) Identify all candidate cones for cluster (red crosses) within (a) cones per pair (here, pairs of PMTs hit. a cone of 50° opening angle. black) of PMTs hit.

Figure 63: Steps for defining MSG variable. The hit PMTs are in gray, the candidate directions are crosses, and those found in the largest cluster are kept a red color.
Comparison of $\boldsymbol{\theta}$ and MSG variables

(c) Find largest candidate Identify candidate (b) Identify all candidate cones for cluster (red crosses) within (a) cones per pair (here, pairs of PMTs hit. a cone of 50° opening angle. black) of PMTs hit. • Sensitive to **possible directions** for assuming

 \mathcal{L}_2 . Chers for defining MCO made ble The bit $DMTe$ are in green the set directions are crosses, and those found in the largest cluster are kept a red color.

SK6 MSG and $\bm{\theta}_{\bm{c}}$ cut comparisons ($\bm{E}_{\bm{e}^+} \in [\bm{8}, \bm{24}]$ MeV)

Signal and NCQE background efficiencies after cuts

ADS, Moriond proceedings (2024)

Neutrino propagation in CCSNe

([backup](#page-50-0) page)

Neutrino oscillations from mismatched mass, flavor states

Parameterizing full mixing matrix between mass, flavor bases

CP-violating Dirac phase Majorana phases (flavor basis) (mass basis)

$$
\begin{pmatrix}\n|v_e\rangle \\
|v_\mu\rangle \\
|v_\tau\rangle\n\end{pmatrix} = \begin{pmatrix}\n1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}\n\end{pmatrix} \begin{pmatrix}\nc_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{CP}} & 0 & c_{13}\n\end{pmatrix} \begin{pmatrix}\nc_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1\n\end{pmatrix} \begin{pmatrix}\n1 & 0 & 0 \\
0 & e^{i\alpha_1} & 0 \\
0 & 0 & e^{i\alpha_2}\n\end{pmatrix} \begin{pmatrix}\n|v_1\rangle \\
|v_2\rangle \\
|v_3\rangle\n\end{pmatrix}
$$
\n
$$
s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}
$$

$$
\theta_{12} = 33.41^{\circ +0.75^{\circ}}_{-0.72^{\circ}}, \quad \theta_{23} = 49.1^{\circ +1.0^{\circ}}_{-1.3^{\circ}}, \quad \theta_{13} = 8.54^{\circ +0.11^{\circ}}_{-0.12^{\circ}}, \quad \delta_{CP} = 196^{\circ +42^{\circ}}_{-25^{\circ}}
$$
Source: NuFIT 2022
(maximal mixing?) (hints of CP-violation)

The mass hierarchy problem (normal vs inverted)

Punchline for the effect of matter on neutrino propagation

(time-integrated SN neutrino spectra)

$$
m_3 > m_2 > m_1
$$
? $F_{\nu_e}^{3>2} = (0 \times F_{\nu_e}^0) + (1 \times F_{\nu_x}^0)$
 $m_2 > m_1 > m_3$? $F_{\nu_e}^{2>3} = (0.3 \times F_{\nu_e}^0) + (0.7 \times F_{\nu_x}^0)$

Modified flavor oscillations in the presence of matter (2 flavors)

Modified flavor oscillations in the presence of matter (2 flavors)

A.D. Santos (LLR/École Polytechnique) - October 2024 - Blois 83

Example calculation of flavor oscillations in supernovae

$$
F_{\nu_e}^{NH} = |U_{e3}|^2 F_{\nu_e}^0 + \cdots, \qquad |U_{e3}|^2 = |\langle \nu_e | \nu_3 \rangle|^2
$$

= $|s_{13}e^{-i\delta_{CP}}|^2 F_{\nu_e}^0 + \cdots,$
= $s_{13}^2 F_{\nu_e}^0 + |U_{e2}|^2 F_{\nu_x}^0 + \cdots, F_{\nu_x}^0 \equiv F_{\nu_\mu}^0 = F_{\nu_\tau}^0$
= $s_{13}^2 F_{\nu_e}^0 + s_{12}^2 c_{13}^2 F_{\nu_x}^0 + |U_{e1}|^2 F_{\nu_x}^0$
= $s_{13}^2 F_{\nu_e}^0 + s_{12}^2 c_{13}^2 F_{\nu_x}^0 + c_{12}^2 c_{13}^2 F_{\nu_x}^0$

Three flavors!

$$
F_{\nu_e}^{NH} = |U_{e3}|^2 F_{\nu_e}^0 + \cdots, \qquad |U_{e3}|^2 = |\langle \nu_e | \nu_3 \rangle|^2
$$

= $|s_{13}e^{-i\delta_{CP}}|^2 F_{\nu_e}^0 + \cdots$,
= $s_{13}^2 F_{\nu_e}^0 + |U_{e2}|^2 F_{\nu_x}^0 + \cdots$, $F_{\nu_x}^0 \equiv F_{\nu_\mu}^0 = F_{\nu_\tau}^0$
= $s_{13}^2 F_{\nu_e}^0 + s_{12}^2 c_{13}^2 F_{\nu_x}^0 + |U_{e1}|^2 F_{\nu_x}^0$
= $s_{13}^2 F_{\nu_e}^0 + s_{12}^2 c_{13}^2 F_{\nu_x}^0 + c_{12}^2 c_{13}^2 F_{\nu_x}^0$

(time-integrated SN neutrino spectra)

$$
F_{\nu_e}^{NH} = (0 \times F_{\nu_e}^0) + (1 \times F_{\nu_x}^0)
$$

$$
F_{\nu_e}^{IH} = (0.3 \times F_{\nu_e}^0) + (0.7 \times F_{\nu_x}^0)
$$

MSW: Different mass hierarchies give different final spectra!

Three flavors!