PRECISION PREDICTIONS FOR THE LHC

Rencontres de Blois 2024 Blois – October 22th 2024

Lorenzo Tancredi – Technical University Munich

HUGE COMMUNITY WORKING AT LHC PRECISION PHYSICS

TOO MANY INTERESTING RESULTS TO SUMMARISE IN FEW MINUTES SO I AM NOT EVEN GOING TO TRY...

Quantum Chromodynamics

Resummation, parton showers, non perturbative corrections, physics of jets...

Heavy quarks

top, bottom, charm quarks QCD and EW effects, fragmentation, hadronization.... Production of electroweak vector bosons

DY, di-boson, three-boson production QCD, EW corrections

Higgs Physics

Higgs couplings, Higgs potential, Electroweak symmetry breaking

WHAT CAN I DO IN 25 MINUTES...

1.MOTIVATE WHY WE ARE DOING THIS AND MOST IMPORTANT PHYSICS

2.INTRODUCE THE FRAMEWORK ON WHICH THESE RESULTS ARE BASED

3.GIVE YOU AN IDEA OF THE STATE-OF-THE-ART

4.STRESS THE LIMITATIONS WE STILL NEED TO OVERCOME

5. ... AND CONVEY SOME EXCITEMENT FOR THIS FIELD... :)

HIGHER AND HIGHER PRECISION AT THE LHC (AND BEYOND)...

Future Circular Collider Circumference: 90 -100 km Energy: 100 TeV (pp) 90-350 GeV (e*e*)

Large Hadron Collider(LHC) Large Electron-Positron Collider (LEP)

Circumference: 27 km Energy: 14 TeV (pp) 209 GeV (e⁺e⁻)

Tevatron Circumference: 6.2 km Energy: 2 TeV(pp)

THE LHC HAS BECOME A PRECISION MACHINE

THE HIGGS BOSON: THE LAST MISSING PIECE

HIGGS INTERACTIONS AT THE LHC

Hints to answer these questions hidden in the details of Higgs interactions to SM particles

"understanding" = knowledge

HIGGS INTERACTIONS AT THEI HC

Table 6: The expected and observed numbers of signal and background events in the four-lepton decay channels for an integrated luminosity of 36.1 fb⁻¹ and at $\sqrt{s} = 13$ TeV, assuming the SM Higgs boson signal with a mass standing = knowledge $m_H = 125.09$ GeV. The second column shows the expected number of signal events for the full mass range while the

HIGGS INTERACTIONS AT THE I HC

HIGGS INTERACTIONS AT THE I HC

thesdata showsha Aro H.S OEKperse alla talla we MS 138 fb⁻¹ (13 TeV) bin WWγ

PROBING H SELF INTERACTION THE CHALLENGES AHEAD

Direct sensitivity in HH production: Progress, but extremely hard to measure even at (HL-)LHC

Kλ

Indirect sensitivity through precision studies!

BEYOND THE HIGGS: PROBING QCD AT THE GHEST FREEGIES

QCD is everywhere at Hadron Colliders!!

BEYOND THE HIGGS: PROBING QCD AT THE GHEST ENERGIES

jets of strongly interacting particles

QCD is everywhere at Hadron Colliders!!

For the first time in decades, we might not expect new particles ahead...

Still, thanks to % precision physics program at colliders, we have the chance to investigate these "new interactions", and scrutinize quantum field theory to the highest precisions

PRECISION STUDIE """

Standard Model Production Cross Section Measurements

Status: October 2023

% PRECISION, HOW DO WE GET THERE?

FROM THEORY TO THEORY PREDICTIONS IT'S A LONG WAY! 5

Z = - à FALFMU + i FAY + $\chi_i \mathcal{Y}_{ij} \mathcal{Y}_{j} \phi + h.c.$ + $|D_{\alpha} \phi|^2 - V(\phi)$

PRECISION AT COLLIDERS: THE "STANDARD" FACTORIZATION PICTURE

PRECISION AT COLLIDERS: THE "STANDARD" FACTORIZATION PICTURE

Non-perturbative power corrections soft/collinear physics minimal value of *n*?

Hard scattering

PRECISION AT COLLIDERS: THE "STANDARD" FACTORIZATION PICTURE

Non-perturbative power corrections soft/collinear physics minimal value of *n*?

Hard scattering

RE

JHE

PRECISION AT COLLIDERS: IS IT UNDER CONTROL?

$$(1 + \mathcal{O}(\Lambda_{\rm QCD}^n/Q^n)) \qquad \Lambda_{\rm QC}$$

Impact in $e^+e^- \rightarrow 3$ jets for α_S fits (subtleties in 3 jets vs) 2 jet case) [Nason, Zanderighi '23]

$_{\rm TD} \sim 1 \; {\rm GeV} \qquad Q \sim 30 - 100 \; {\rm GeV}$

if n = 1, can easily give % level corrections

Recently excluded for some observables

 $q\bar{q} \rightarrow t\bar{t}$ [Makarov, Melnikov, Nason, Ozcelik '23] Using short-distance (\overline{MS}) top-mass scheme

Single top [Makarov, Melnikov, Nason, Ozcelik '23, '24] Depending also on observable (positron momentum components!)

What about more subtle effects? $\Lambda^2_{OCD} \ln^2 \Lambda_{OCD}$

Х

 $d\sigma_{\text{part}}(x_1, x_2) \longrightarrow \sigma_{q\bar{q} \to gg} = \int [dPS] |\mathcal{M}_{q\bar{q} \to gg}|^2$

 $\mathrm{d}\sigma_{\mathrm{part}}(x_1, x_2) \longrightarrow \sigma_{q\bar{q} \to gg} = \int$

small "coupling constant" ~ 0.1

 $\left|\mathcal{M}_{q\bar{q}\to gg}\right|^2 = \left|\mathcal{M}_{q\bar{q}\to gg}^{LO}\right|^2 + \left(\frac{\alpha_s}{2\pi}\right)\right|.$

$$\left[\mathrm{dPS}\right] \left| \mathcal{M}_{q\bar{q} \to gg} \right|^2$$

$$\mathcal{M}_{q\bar{q}\to gg}^{NLO}\Big|^2 + \left(\frac{\alpha_s}{2\pi}\right)^2 \Big|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\Big|^2 + \dots$$

 $\mathrm{d}\sigma_{\mathrm{part}}(x_1, x_2) \longrightarrow \sigma_{q\bar{q} \to gg} = \int [\mathrm{dPS}] \left| \mathcal{M}_{q\bar{q} \to gg} \right|^2$

$\left|\mathcal{M}_{q\bar{q}\to gg}\right|^2 = \left|\mathcal{M}_{q\bar{q}\to gg}^{LO}\right|^2 + \left(\frac{\alpha_s}{2\pi}\right)\left|\mathcal{M}_{q\bar{q}\to gg}\right|^2 +$

Double Virtual

Real Virtual

$$\mathcal{M}_{q\bar{q}\to gg}^{NLO}\Big|^2 + \Big(\frac{\alpha_s}{2\pi}\Big)^2 \Big|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\Big|^2 + \dots$$

 $\mathrm{d}\sigma_{\mathrm{part}}(x_1, x_2) \longrightarrow \sigma_{q\bar{q} \to gg} = \int [\mathrm{dPS}] \left| \mathcal{M}_{q\bar{q} \to gg} \right|^2$

$\left|\mathcal{M}_{q\bar{q}\to gg}\right|^2 = \left|\mathcal{M}_{q\bar{q}\to gg}^{LO}\right|^2 + \left(\frac{\alpha_s}{2\pi}\right)\left|\mathcal{I}_{q\bar{q}\to gg}\right|^2$

Double Virtual

Real Virtual

$$\mathcal{M}_{q\bar{q}\to gg}^{NLO}\Big|^2 + \Big(\frac{\alpha_s}{2\pi}\Big)^2 \Big|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\Big|^2 + \dots$$

Cancellation of IR divergences

Well under control up to NNLO Antennas, Stripper, Nested, Torino, Colorful, Geometric, slicing schemes

(Some more developed than others, but conceptually under control!)

See L. Bonino's and G. Fontana's talks

 $\mathrm{d}\sigma_{\mathrm{part}}(x_1, x_2) \longrightarrow \sigma_{q\bar{q}\to gg} = \int [\mathrm{dPS}] \left| \mathcal{M}_{q\bar{q}\to gg} \right|^2$

$\left|\mathcal{M}_{q\bar{q}\to gg}\right|^2 = \left|\mathcal{M}_{q\bar{q}\to gg}^{LO}\right|^2 + \left(\frac{\alpha_s}{2\pi}\right)\right|$

$$\mathcal{M}_{q\bar{q}\to gg}^{NLO}\Big|^2 + \Big(\frac{\alpha_s}{2\pi}\Big)^2 \Big|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\Big|^2 + \dots$$

Two-loop amplitudes often bottleneck

Cancellation of IR divergences

Well under control up to NNLO Antennas, Stripper, Nested, Torino, Colorful, Geometric, slicing schemes

(Some more developed than others, but conceptually under control!)

See L. Bonino's and G. Fontana's talks

 $0 = \int \prod_{l=1}^{L} \frac{d^{D}k_{l}}{(2\pi)^{D}} \frac{\partial}{\partial \ell_{k}^{\mu}} \left| v^{\mu} \frac{S_{1}^{b_{1}} \dots S_{m}^{b_{m}}}{D_{1}^{a_{1}} \dots D_{n}^{a_{n}}} \right|$

ON THE DECOMPOSITION: IBPS AND MASTER INTEGRALS

Modern methods, first applied* systematically in 1997 to calculate **electron g-2 to 3 loops Reduction to 17 Master Integrals**

 $= \frac{83}{72}\pi^2\zeta(3) - \frac{215}{24}\zeta(5)$ $-\frac{239}{2160}\pi^4+\frac{139}{18}\zeta(3)$ -

$$+\frac{100}{3}\left[\left(\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{\ln^{4}2}{24}\right)-\frac{\pi^{2}\ln^{2}2}{24}\right]\\-\frac{298}{9}\pi^{2}\ln 2+\frac{17101}{810}\pi^{2}+\frac{28259}{5184}$$
 [Laporta, Remiddi '97]

* as far as I know...

ON THE DECOMPOSITION: IBPS AND MASTER INTEGRALS

Modern methods, first applied* systematically in 1997 to calculate electron g-2 to 3 loops Reduction to 17 Master Integrals

Since then, things have changed a lot! Complexity **increases factorially** with **# of legs** and **# of loops**

$$+\frac{100}{3}\left[\left(\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{\ln^{4}2}{24}\right)-\frac{\pi^{2}\ln^{2}2}{24}\right]\\-\frac{298}{9}\pi^{2}\ln 2+\frac{17101}{810}\pi^{2}+\frac{28259}{5184}$$
 [Laporta, Remiddi '97]

- many scales \rightarrow huge rational functions to handle symbolically (typically TBs of RAM on large machines!) - many loops \rightarrow explosion in number of identities (typically $\geq 10^9$ for $2 \rightarrow 2$ at three loops, again TBs!) * as far as I know...

ON THE DECOMPOSITION: NEW M

Finite-fields methods

Avoid intermediate expression swell

[von Manteufell, Schabinger, Peraro, Abreu, Page, Ita, Klappert, Lange,....]

intersection theory

$$\langle \varphi | \mathcal{C}] = \sum_{i,j,k,l=1}^{|\chi|} \langle \varphi | \varphi_j \rangle (\mathbf{C}^{-1})_{ji} \mathbf{P}_{il} (\mathbf{H}^{-1})$$

[Mizera, Mastrolia, Frellesvig, Brunello, Crisanti, Mattiazzi, Gasparotto, Smith, Chen, Feng, Yang, Xu, Pokraka, Caron-Huot, Giroux, Weinzierl, Fontana,

Peraro...]

Abreu, Agarwal, Badger, Buccioni, Chawdhry, Chicherin, Czakon, de Laurentis, Febres-Cordero, Gambuti, Gehrmann, Henn, Ita, Lo Presti, Manteuffel, Ma, Mitov, Page, Peraro, Pochelet, Schabinger, Sotnikov, Tancredi, Zhang, ...

4 loop 3 point

Henn, Lee, Manteuffel, Schabinger, Smirnov, Smirnov, Stainhauser,...

Bargiela, Bobadilla, Canko, Caola, Jakubcik, Gambuti, Gehrmann, Henn, Lim, Mella, Mistlberger, Wasser, Manteuffel, Syrrakos, Smirnov, Tancredi, ...

ON THE DECOMPOSITION: STATE-

Abreu, Agarwal, Badger, Buccioni, Chawdhry, Chicherin, Czakon, de Laurentis, Febres-Cordero, Gambuti, Gehrmann, Henn, Ita, Lo Presti, Manteuffel, Ma, Mitov, Page, Peraro, Pochelet, Schabinger, Sotnikov, Tancredi, Zhang, ...

All processes computed in Full Color **Including Planar and Non-Planar diagrams**

RT FOR <u>QCD CALCULATIONS</u>

4 loop 3 point

Henn, Lee, Manteuffel, Schabinger, Smirnov, Smirnov, Stainhauser,...

Bargiela, Bobadilla, Canko, Caola, Jakubcik, Gambuti, Gehrmann, Henn, Lim, Mella, Mistlberger, Wasser, Manteuffel, Syrrakos, Smirnov, Tancredi, ...

PROBING QCD AT THE HIGHEST ENERGIES

Multijet to fit α_S

3-jet production in NNLO QCD [Czakon, Mitov, Poncelet '22, '23]

BEYOND ALL-MASSLESS: AMPLITUDES AND CROSS SECTIONS

Frontier of algebraic complexity: production of 2 massless and 1 massive particle at 2 loops

 $pp \rightarrow \{Vjj, Hjj, V\gamma\gamma, \dots\}$

BEYOND ALL-MASSLESS: AMPLITUDES AND CROSS SECTIONS

Frontier of algebraic complexity: production of 2 massless and 1 massive particle at 2 loops

Many results for LC (planar) virtual corrections, e.g. 1 b jet @ 13 TeV

 $pp \rightarrow Hb\bar{b}$ [Badger, Hartanto, Krys, Zoia 21] $pp \rightarrow W\gamma i$ [Badger, Hartanto, Kłys, Zoia '22] [Abreu, Cordero, Ita,₁Klinkert, Page, Sotnikov '22] $pp \rightarrow Wjj$

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia '23]

 $pp \rightarrow \{Vjj, Hjj, V\gamma\gamma, \dots\}$

	-
	-
	-
et al	
	-
	-

TOWARDS N3LO: THE NEW FRONTIER

- Our current ability of going to N3LO still rather limited and based on:
- and Projection to Born [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

- or slicing techniques based on factorization theorems (q_T , N-jettines)

First results for $2 \rightarrow 1$ processes (DY, Higgs)

- either direct "analytic calculation" of some observables (reverse unitarity) [Anastasiou, Melnikov '02]

[Catani, Grazzini '07] [Boughezal, Focke, Liu, Petriello '16]

TOWARDS N3LO: THE NEW FRONTIER

Impressive effort to compute all missing ingredients for slicing methods to N3LO

- N-jettiness Beam Functions

[Ebert, Mistlberger, Vita '20] [Baranowski, Behring, Melnikov, Rietkerk, Tancredi, Wever '17,'19,'22]

- zero-jettiness soft function (for color singlet)

- recent progress on generalization of Antenna's to N3LO See G. Fontana's talk this afternoon

[Baranowski, Delto, Melnikov, Pikelner, Wang '24]

TOWARDS N3LO: THE NEW FRONTIER (FOR AMPLITUDES TOO)

First 3 loop amplitudes with **one off-shell external leg**

- **3 loop leading-color amplitudes** for $q\bar{q} \rightarrow \{Zj, Wj\}$

[Vita, Mastrolia, Schubert, Yundin, Syrrakos '14] [Canko, Syrrakos '21] [Gehrmann, Jakubcik, Mella, Syrrakos, Tancredi '23]

- 3 loop master integrals for leading color amplitudes for $pp \rightarrow Hj$

[Bobadilla, Henn, Lim,'23] [Canko, Syrrakos '23]

[Bobadilla, Gehrmann, Henn, Jakubcik, Lim, Mella, Syrrakos, LT to appear soon]

CONCLUSIONS

- 1.Colliders remain some of the most flexible (multi-purpose) experiments to investigate fundamental questions in physics
- 2.Higher-order corrections crucial to precision physics studies: QCD, QCD-EW, pure EW ... 3.QCD NNLO calculations for $2 \rightarrow 3$ have become a reality!
- 4. Breaking the QCD N3LO barrier seems to be also around the corner (including progress on PDF evolution): amplitudes are on the way, progress on IR subtraction.
- 5. Accounting for QCD-EW and pure EW to higher order becomes increasingly important

Exciting developments all over! Stay tuned...!

