Searches for supersymmetry and extra Higgses at the LHC

Blois 2024: 35th Rencontres de Blois on "Particle" Physics and Cosmology"

UCLouvain

Sam Bein, for the ATLAS and CMS Collaborations

Supersymmetry can

- 1. account for DM if
 - neutralino ${ ilde \chi}_1^0$ is the LSP
 - R-parity is conserved (RPC)
 - if enough LSPs can annihilate before freeze-out requires small Δm or funnel
- 2. solve a fine tuning puzzle if
 - SUSY is only softly broken many proposed breaking mechanisms
 - if little hierarchy problem doesn't arise

Simplified models don't allow us to comment on these constraints because the constraints depend on the full particle spectrum and not just 2-3 masses

Independent terms need to cancel to give something in line with m(Z) - so they shouldn't be too big

Supersymmetry can

3. Make successful predictions, like the Higgs mass

Future of supersymmetry, Stephen Martin@SUSY2023

Dozens of searches in Run 2

Mapping RPC SUSY

<u>Supersymmetry without prejudice</u>, Berger, Gainer, Hewett, Rizzo

- "phenomenological minimal supersymmetric Standard Model" (pMSSM)
- 19-parameter sub-model of MSSM
- captures most phenomenology
- LHC, dark matter, naturalness insights

$$\begin{array}{ll} & \tilde{\chi}_1^+ \,/\, \tilde{\chi}_2^0 \ \text{co. ann.} & & \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow b \bar{b} \\ & \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow Z \ h & & & \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow V V \\ & \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow t \bar{t} & & & & Z/h \ \text{funnel} \end{array}$$

Mapping RPC SUSY

- There are now Run 2 pMSSM studies from ATLAS and CMS
 - ATLAS: JHEP 05 (2024) 106 Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM
 - electroweak SUSY with 2 dedicated scans general and binostocked
 - 8 analyses, ~20k models points randomly scanned
 - CMS: <u>PAS-24-004</u> Phenomenological MSSM interpretation of CMS searches in pp collisions at 13 TeV
 - Electroweak and strong SUSY production in a single scan
 - 5 analyses, 500k model points scanned with MCMC likelihood

Included final states

Final State Category	Experiment	Analyses / Final State	Journal Reference			
0 lepton (all-hadronic)	ATLAS	Hadronic boosted V	Phys. Rev. D 104 (2021) 112010			
	CMS	Jets+MHT, HT, n(b-tags)	JHEP 10 (2019) 244			
1 lepton	ATLAS	1Lbb	Eur. Phys. J. C 80 (2020) 691			
	CMS	Single-lepton Δφ	JHEP 09 (2023) 149			
2-lepton	ATLAS	2L0J	Eur. Phys. J. C 80 (2020) 123			
	ATLAS	2L2J	Eur. Phys. J. C 83 (2023) 515			
	CMS	Same-flavor opposite sign	JHEP 04 (2021) 123			
3-lepton	ATLAS	3L	Eur. Phys. J. C 81 (2021) 1118			
Compressed/Soft	ATLAS	Compressed	Phys. Rev. D 101 (2020) 052005			
	CMS	Soft opposite-sign leptons	JHEP 2204 (2022) 91			
Disappearing track	ATLAS	tracklet, pT spectrum	Eur. Phys. J. C 82 (2022) 606			
	CMS	short tracks with dE/dx	Phys. Rev. D 109 (2024) 072007			

Dark matter candidate mass

Number of models

Sam Bein, UCLouvain

Survival probability

Relic density

Planck

>90% of relic density models survive

CMS-SUS-PAS-24-004

JHEP 05 (2024) 106 Planck

Relic density and fine-tuning

Planck

>90% of relic density models survive

<50% of natural models survive

Analysis impact

- Diagonal numbers: percentage of models excluded by given analysis
- Off-diagonals: event overlap in signal regions

Sam Bein, UCLouvain

TLAS searches 18	ATLAS Preliminary, EWKino scan											
FullHad	4	5	2	0.9	22	0	3	0	15	0.2	0	
1Lbb	38	0.5	0	58	55	0	42	0	0	0	0	
Compressed	12	0	0.6	0	22	30	10	0	0	1	0	
2L0J	4	32	0	0.9	60	2	69	0.9	0	0	0	
2L2J	21	7	3	13	4	10	31	2	7	1	3	
3L (offshell)	0	0	23	2	48	0.8	30	6	0	2	7	
3L (onshell)	5	9	3	28	56	11	2	7	2	2	6	
4L	0	0	0	5	50	30	90	0.2	0	0	15	
Disappearing Track	6	0	0	0	3	0	0.3	0	10	0.2	0	
ATLAS m(A)	0.9	0	0.9	0	6	2	5	0	3	0.9	0	
ATLAS BR(<i>H</i> → inv.)	0	0	0	0	72	39	89	17	0	0	0.1	
JHEP 05 (202	EullHad	106	Compressed	2L0J	2L2J	3L (offshell)	3L (onshell)	4L	Disappearing Track	ATLAS m(A)	ATLAS BR(<i>H</i> → inv.)	

- soft lepton, multi-lepton analyses
 - contour back up in pMSSM

- brings vast exclusion
- models excluded

pMSSM impact, analysis sequence

Soft opposite-sign lepton JHEP 2204 (2022) pp.091

- 2- or 3 soft leptons
 - OSSF pair
 - $\geq 2\ell$ with $p_T > 3 \text{ GeV}$
- ISR jet

SUS-18-004

• Binning in invariant mass M(II)

pMSSM impact, analysis sequence 138 fb⁻¹ (13 TeV)

+Single-lepton, Delta-phi JHEP 09 (2023) 149

- Requires exactly 1 lepton
 - Ele or Mu with pT>25 GeV

+Opposite-charge lepton JHEP 04 (2021) 123

- 2 high-pT leptons
- OSSF lepton pair

 $\overline{\widetilde{q}}$

SUS-18-004+SUS-20-001+SUS-21-007

 χ_2

 χ_1°

pMSSM impact, analysis sequence

+SUSY disappearing track Phys. Rev. D 109 (2024) 072007

- \geq 1 disappearing tracks
- 0, 1 leptons; 0, >0 b-tags
- long/short
- dE/dx binning

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006

pMSSM impact, analysis sequence

+Zero-lepton, jets, MHT JHEP 10 (2019) 244

- Inclusive 0-lepton
 - Veto electron, muon candidates with pT>5 GeV
- >1 ak4 jets
- 0, >0 b-tagged jets
- Binning in MHT, HT, n(jets), nb

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006+SUS-19-006

SUSY dark matter

+Relic density (Planck)

 $\Omega_h^2 < 0.12 * 1.1$

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006+SUS-19-006+DM constraints

SUSY dark matter

+Relic density (Planck)

 $\Omega_h^2 < 0.12 * 1.1$

+Direct-detection LZ(22)

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006+SUS-19-006+DM constraints

Natural SUSY dark matter

+Relic density (Planck)

 $\Omega_h^2 < 0.12 * 1.1$

+Direct-detection LZ(22)

CMS-SUS-PAS-24-004

Natural SUSY dark matter

+Relic density (Planck)

 $\Omega_h^2 < 0.12 * 1.1$

+Direct-detection LZ(22)

CMS-SUS-PAS-24-004

sequence pMSSM impact analysis

SUS-18-004

sequence VSIS anal pMSSM impact

<u>SiS</u> anal pMSSM impact

Soft pion track

- Sensitivity gap around dm = 0.3-1.0 GeV

- - **SUSY with ATLAS**" Ben Hodkinson

Soft pion track

- Higgsino DM in High-Scale SUSY Shirai, Nagata
- Sensitivity gap around dm = 0.3-1.0 GeV
- Chargino decays within beam pipe into pion+LSP

- - **SUSY with ATLAS**" Ben Hodkinson

Slepton signatures with 2 leptons

- Search for SUSY particle[s] in final states with two oppositely charged leptons and large MET at 13 TeV
- Considers different flavor (DF) di-lepton final states
- Targets slepton in addition to electroweakino, and top squark production
- SRs binned in $p_T^{\text{miss}}, m_{T2}$
- with and without b-tagged jets

CMS-SUS-PAS-23-002

- Many more SUSY results!
 - ATLAS recently: <u>RPV stops</u> <u>VBF compressed</u>, etc

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

• CMS recently: <u>RPV stops</u>, <u>Recursive Jigsaw Compressed</u>, etc

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS/index.html

Extra Higgses

- In the MSSM variants: (H^0, h, A, H^{\pm})
- Extended Higgs sectors
 - 2-Higgs doublet models (2HDM)
 - 2HDM+s, 2HDM+a featuring (pseudo) scalar
 - LHC DM WG White Paper
- Dark sectors feebly coupled to the SM \bullet

CMS and ATLAS diphoton resonance searches

Search for a standard model-like Higgs bosons in mass range 70-110 GeV

- fit)/σ

(data -

- CMS <u>arXiv:2405.18149</u>
- ATLAS <u>arXiv:2407.07546</u>
 - Model-specific BDT
 - Model-independent
- Unofficial combination
 - The 95.4 GeV diphoton excess, Biekötter, Heinemeyer, Weiglein JHEP 2022, 201 (2022)
 - Significance 3.1 σ

BSM in the Higgs sector - talk on Wednesday Elizaveta Cherepanova

Hunting the dark Higgs

- Dark sector models feature new Higgs bosons
 - Hunting the dark Higgs <u>R Duerr, et. all</u> 2017
 - New particle content
 - Heavy vector boson, dark matter candidate chi, and lightest dark sector Higgs
 - Achieve low enough relic density tl

Sam Bein, UCLouvain

hrough
$$\chi \to ss, m(\chi) > m(s)!$$

Dark Higgs model

- Can generate relic density
- Light Pseudo scalar mediator
- Rich collider pheno Z', resonances, MET

- S->WW, ZZ
 - Final states
 - All-hadronic
 - single-lepton
 - 2-lepton
 - Bin in $m_{\ell,\ell}, m_T(\ell_{\min}, \vec{p}_T^{\text{miss}})$

Broad coverage but 95 GeV Higgs not considered

Hunting the dark Higgs @ ATLAS

Search for dark matter produced in association with a dark Higgs boson in the bb final state arXiv:2407.10549

- Resolved
 - 2 small-radius b-jets
- Marged
 - 1 large radius double b-jet (DXbb algorithm)
- Binning in E_T^{miss}
- Targets, probes m(h) 30-150 GeV

Data

Z+jets

SM Vh

W+jets

Single top

Uncertainty

m₂=3000 GeV,mχ=200 GeV

••••• Pre-fit Background

Dark Higgs s(bb)

g_=0.25,gχ=1.0

••••• m_s = 130 GeV (×5)

..... m_s = 50 GeV(×10)

المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمتحاف والمتكال

200

150

250

m_{bb} [GeV]

Hunting the dark Higgs @ ATLAS

m_s [GeV]

400

300

200

100

500

1000

Search for dark matter produced in association with a dark Higgs boson in the **bb** final state <u>arXiv:2407.10549</u>

- Resolved
 - 2 small-radius b-jets
- Marged
 - 1 large radius double b-jet (DXbb algorithm)
- Binning in E_T^{miss}
- Targets, probes m(h) 30-150 GeV

m_{Z'} [GeV]

MSSM scenario with h->bbbar

- Search for bosons of an extended Higgs sector in b quark final states CMS-SUS-PAS-24-001
- Fully hadronic:
 - \geq 2 high-pT jets
 - \geq 3 b-tagged jets
- Single-lepton channel +
 - pT>12 GeV
 - Probes Lower mass ϕ
- Select highest pT b-jets M_{12}

Coimpreshensive MSSM coverage

Sam Bein, UCLouvain

t(b) H^+ , $H^+ \rightarrow \tau \nu$, 36.1 fb⁻¹ Phys. Rev. D 102 (2020) 032004 $H \rightarrow ZZ \rightarrow 4I/Ivv$, 139 fb⁻¹ Eur. Phys. J. C 81 (2021) 332 $A \rightarrow Zh, h \rightarrow bb, 139 \text{ fb}^{-1}$ t(b) H^+ , $H^+ \rightarrow tb$, 139 fb⁻¹ $H \rightarrow WW \rightarrow h \nu h \nu$, 139 fb⁻¹ $H \rightarrow hh \rightarrow 4b/bb\gamma\gamma/bb\tau\tau$ ttH/A, H/A \rightarrow tt, 139 fb⁻¹ gg H/A, H/A \rightarrow tt, 140 fb⁻¹

Phys. Rev. Lett. 125 (2020) 05180

- Many more extra Higgs results!
 - ATLAS recently: <u>H->2-photon+charm</u>, etc

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

• CMS recently: light pseudoscalars in Higgs125 decays, etc

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG/index.html

Closing remarks

- ATLAS and CMS evaluate viability of R-parity conserving SUSY
 - Natural SUSY under pressure, SUSY DM largely unconstrained
 - With DM and naturalness constraints, MSSM bounded from all sides
 - Specific signatures needed, e.g., displaced pion already by ATLAS!

- BSM Higgs extensively searched for in MSSM to 2HDM to dark sectors $\frac{2}{5}$
 - Moderate excesses in $\gamma\gamma$ mass await answer from future data \bullet
 - $s \rightarrow bb$ a natural place to look next, need extra handle, e.g., E_T^{miss}
 - Range of masses explored, now including 95 GeV, by ATLAS!

Thanks for your attention!

Sam Bein, UCLouvain

Backup

Light pseudoscalars

bosons produced in Higgs boson decays in 4τ , $2\tau 2\mu$ final states

- Select 2 same-charge muons
 - Each with nearby opposite-charged particle
- Search in plane of two invariant masses

Backup: survival probability

Number of models

pMSSM Bayes factor quantiles

5-analysis combination

• plotting upper quantiles of the Bayes Factor:

 $\mathsf{BF}(\theta) = \mathscr{L}(\theta, \mu = 1) / \mathscr{L}(\theta, \mu = 0)$

CMS-SUS-PAS-24-004

ATLAS pMSSM models surviving all constraints

JHEP 05 (2024) 106

