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Dark Matter Searches
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Evidence for Dark Matter
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Clear evidence for dark matter (DM) on 
both galactic ( ) and cosmological ( ) 
scales.


Galactic Rotation Curves: Flat velocity 
distribution implies non-luminous DM 
halo.


Bullet Cluster: Strong evidence for non-
baryonic DM.


Cosmic Microwave Background: 
Temperature anisotropies of  
deduces (dark) matter-energy content 
of Universe.


Large-Scale Structure: Cold DM predicts 
hierarchal evolution from gravitational 
interactions. 

← →

𝒪(10−5)



What exactly do we know about Dark Matter?
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Optically dark: does not interact with EM force.


Gravitationally bound to our galaxy,  = 0.3 GeV/cm3.


Extremely weakly interacting.


Comprises ~25% of Universe; 5x more abundant than normal matter!

ρ

Spoiler: Not Much!

DM Halo Distribution,  M ∝ r



The Challenge
Dark Matter can span over 80 orders of magnitude! 

Lin, Tongyan. "TASI lectures on dark matter models and 
direct detection." arXiv preprint arXiv:1904.07915 4 (2019). 4
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An Experimentalist’s View
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https://nickrodd.com/research.html

Anomalous flux of , , 
cosmic-rays from DM-DM 
annihilations gravitationally 
accumulated in heavy 
cosmological objects.

γ ν

An Experimentalist’s View
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χ

pp

https://www.nbcnews.com/sciencemain/whats-dark-matter-find-out-about-new-frontiers-physics-2d11692139

Missing transverse energy 
associated with DM 
produced via 

.p + p → χ + χ

An Experimentalist’s View
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χχ
χ + N → χ + N

χχ
χ + e− → χ + e−

Elastic scattering of non-
relativistic DM particle with 
nucleus or atomic electron.


NRs: Coherent, .


Measure NR/ER energy in 
detector to infer DM 
scattering interaction.

σ ∝ A2

Nuclear Recoil (NR) Electron Recoil (ER)

An Experimentalist’s View



Direct Detection
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Courtesy of J. Monroe (ICHEP ’24)


EThr,γ ∼ 𝒪(keV)

   potential to reach meV

EThr,Q ∼ 𝒪(10 eV)


EThr,Heat ∼ 𝒪(10′￼s eV)

Scintillating 
cryogenic 
bolometers

Scintillating crystals

Liquid noble-gas 
detectors

Liquid noble-gas 
dual-phase time 
projection chambers

Directional 
detectors

Germanium 
detectors

Cryogenic 
bolometers + 
charge readout

Cryogenic 
bolometers

Superheated 
liquidsTechnologies Potential to reach meV

Potential to reach eV Potential to reach 10 eV
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Choice of which targets/technique(s) to use is based on 
compromise between achieving:


1) Lowest energy threshold.


2) Largest exposure.


3) Best particle identification.


4) Lowest background contamination.



Weakly Interacting Massive Particles
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WIMP Search Overview
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Snowmass Cosmic Frontier Report, arXiv:2211.09978

Pushing Unchartered Territory

Expect <1 
signal event 
per year!
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1) Larger Detectors

- Operate them for 
longer!

2) Background Mitigation

- Material Control/Radioassay

- Particle ID (Bkgd Discrimination) 

DarkSide-50

DarkSide-20k 

Courtesy of J. Monroe (ICHEP ’24)

DarkSide-50  DarkSide-20k: 
x1000 increase in target 
volume.

→

Pushing Unchartered Territory
WIMP Search Overview
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Snowmass Cosmic Frontier Report, arXiv:2211.09978

Expect <1 
signal event 
per year!

WIMP Search Overview
Pushing Unchartered Territory
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Snowmass Cosmic Frontier Report, arXiv:2211.09978

Expect <1 
signal event 
per year!

WIMP Search Overview
Pushing Unchartered Territory



High Mass WIMP Searches
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Liquid noble detectors lead constraints.


DEAP-3600: Single-Phase Liquid Argon  
Scintillation signal (S1) only.


Dual-Phase Time Projection Chambers (TPCs) 
[Liquid & Gas]  Scintillation (S1) and Ionisation 
(S2) signal; better position reconstruction.


‣ Xenon: PandaX, XENON-1T, LZ


- Lower intrinsic radioactivity; enhanced  
boost factor (spin-independent).


‣ Argon: DarkSide-50 (DarkSide-20k)


- Strong NR/ER discrimination power from 
Pulse Shape Discrimination (PSD), more 
scalable.

→

→

A2

χχ

Courtesy of A. Cottle (ECFA ’24)

PSD

S1:S2



High Mass WIMP Searches
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Leading limits on SI-WIMP 
interactions from LZ (7 tonne LXe).


‣ Next generation LXe 
experiment: XLZD (40-60 
tonnes)

Global Argon Dark Matter Collaboration (GADMC) formed 
in 2017: 400+ people across 14 countries.


‣ DarkSide-20k (50 tonnes LAr) currently being 
constructed at LNGS; SI-WIMP sensitivity projection 
down to  floor! [See D. Santone’s talk].ν



“Light” Dark Matter
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Low-Mass WIMP Searches
Liquid Nobles: Dual-phase TPC technology can exploit ionisation 
signal (S2) only to reach sub-keV recoil energy thresholds.

χ
e− e−

χχ

Acerbi, F., et al. 
"DarkSide-20k 

sensitivity to light 
dark matter 

particles." arXiv 
preprint 

arXiv:2407.05813 
(2024).

Xe 
experiments

Akerib, D. S., et al. 
"Enhancing the 
sensitivity of the LUX-
ZEPLIN (LZ) dark matter 
experiment to low energy 
signals." arXiv preprint 
arXiv:2101.08753 (2021).
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S2

χχ e-

e-
e-

e-

Edrift

S2



Low-Mass WIMP Searches χ
e− e−

χχ e−
e−

Migdal Effect: Surrounding electron cloud accelerated after 
NR, releases de-excitation ionisation.


‣ Additional ionisation signal means even lower energy 
threshold!

20

* Same citations as previous slides

Liquid Nobles: Dual-phase TPC technology can exploit ionisation 
signal (S2) only to reach sub-keV recoil energy thresholds.

S2

χχ e-

e-
e-

e-

Edrift

S2



Low-Mass WIMP Searches
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Semiconductors

Superfluid Helium Bolometers

- Ge, Si detectors (EDELWEISS, 
SuperCDMS)


- Recoil energy from heat, 
particle ID from heat/
ionisation ratio.

- Al2O3, CaWO4 (CRESST)


- Recoil energy from 
heat, particle ID from 
heat/scintillation ratio.

Scintillating Crystals

- He-4 (HeRALD) or He-3 (QUEST-
DMC).


- Recoil energy from quasiparticles 
(heat), particle ID from 
quasiparticle/scintillation ratio.

Low-mass cryogenic experiments have potential to reach meV recoil energy thresholds: opportunity to 
explore brand new parameter space!


‣ Limited by readout technology.



Low-Mass WIMP Searches
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Spin-
independent ( ) 
and spin-
dependent ( ) 
interactions can 
be probed using 
different targets. 


Sensitivity to 
brand new 
parameter space!

←

→

Angloher, G., et al. "Results on sub-GeV dark matter from a 10 eV threshold CRESST-
III silicon detector." Physical Review D 107.12 (2023): 122003.

QUEST-DMC collaboration, et al. "QUEST-DMC superfluid 3 He detector for sub-GeV dark matter." The 
European Physical Journal C 84.3 (2024): 248.

[See P. Franchini’s talk].

Low-mass cryogenic experiments have potential to reach meV recoil energy thresholds: opportunity to 
explore brand new parameter space!


‣ Limited by readout technology.
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Leading constraints at high mass: WIMP trapping in the 
Sun.


‣ WIMP-p scattering + capture in the Sun.


‣ Annihilation signatures in neutrino telescopes. 

Complementarity: Indirect Detection

PICASSO, SIMPLE, 

PICO-2, PICO-60 (CF3I), 

ICECUBE, SUPER-K,

PANDAX-II


Ellis et al.,”European Strategy for 
Particle Physics Preparatory Group: 

Physics Briefing Book." arXiv 
preprint arXiv:1910.11775 (2019).

Courtesy of J. Monroe (ICHEP ’24)

Gamma-ray observations of dwarf spheroidal galaxies  
Constraints on DM self-annihilation cross section.


‣ ‘Fermi GeV excess’: DM signal?


Astrophysical interpretations of the excess probed with 
upcoming radio observations, while collider experiments 
probe dark matter origin.

→
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Complementarity: Collider Searches
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Colliders probe what the dark matter particle is (no assumptions made on thermal history of DM)


‣ Limits on branching ratios  cross-section vs mass (direct detection).


Happy region of overlap where accelerators can confirm direct detection discovery (and vice versa!)

→

Scalar mediator between 
SM and Dirac DM fermions

Higgs decay 
into invisible 
scalar DM

Collider limits are 
strongly model-

dependent!



Beyond the WIMP Paradigm 
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Elastic scattering off atomic electrons: interaction of sub-GeV 
DM fermion/scalar boson via vector mediator.


Mediator can be light  or heavy .(mmed ≪ mχ) (mmed ≫ mχ)

χχ χ

e− e−

χ

e−

Acerbi, F., et al. "DarkSide-20k sensitivity to light dark matter particles." arXiv preprint arXiv:2407.05813 (2024).
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Warm DM inelastic scatters 
off atomic electrons: sterile !


Sterile  mixing with an 

active  state by an angle 

  could inelastically 
scatter off a bound electron.

ν

ν
ν

|Ue4 |2

Constraints on  
from beta decay: 
energy  spectrum 
modified by sterile 
neutrino mixing.

|Ue4 |2

Indirect detection: 
X-ray energy

spectrum 
strongly 
constrains |Ue4 |2

Bolton, Patrick D., Frank F. Deppisch, P. S. Dev. "Neutrinoless double beta decay 
versus other probes of heavy sterile neutrinos." Journal of HEP 2020.3 (2020): 1-56.

Mertens, Susanne, et al. "A novel detector system for KATRIN to search for 
keV-scale sterile neutrinos." Journal of Physics G: Nuclear and Particle 

Physics 46.6 (2019): 065203.Beyond the WIMP Paradigm 
χχ χ

e− e−

χ

e−
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Warm DM inelastic scatters 
off atomic electrons: sterile !


Sterile  mixing with an 

active  state by an angle 

  could inelastically 
scatter off a bound electron.

ν

ν
ν

|Ue4 |2

Constraints on |Ue4|2 
from beta decay: 
energy  spectrum 
modified by sterile 
neutrino mixing.

Indirect 
detection: X-ray 
energy

spectrum 
strongly 
constrains |Ue4|2 

Bolton, Patrick D., Frank F. Deppisch, P. S. Dev. "Neutrinoless double beta decay 
versus other probes of heavy sterile neutrinos." Journal of HEP 2020.3 (2020): 1-56.

Mertens, Susanne, et al. "A novel detector system for KATRIN to search for 
keV-scale sterile neutrinos." Journal of Physics G: Nuclear and Particle 

Physics 46.6 (2019): 065203.Beyond the WIMP Paradigm 
χχ χ

e− e−

χ

e−

Phase-space 
accessible by 
direct detection 
exp. already 
ruled out.



Beyond the WIMP Paradigm 

28

χ

e− e−

χ
e−

γ

Absorption by atomic electrons: “dark” photons (DPs) via kinetic mixing, 
axion-like particles (ALPs) via axioelectic effect.


‣ Perform “bump hunt”: mono-energetic peak centred at  (smeared by 
detector resolution).


Set constraints on ALP-  coupling  or DP kinetic mixing strength .

mχ

e− gAe κ

Acerbi, F., et al. "DarkSide-20k sensitivity to light dark matter particles." arXiv preprint arXiv:2407.05813 (2024).



Very Heavy Dark Matter
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Planck-Scale Mass Searches
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Produced non-thermally through GUTs, primordial black 
hole radiation, or extended thermal production in a dark 
sector.


Has high enough mass to scatter multiple times as it 
traverses a detector: multiple co-linear NRs.


Optimal target: large detector area normal to DM flux and 
large “thickness”:


‣ First direct detection constraints from DEAP-3600, 
followed by LZ.

σ [cm
2 ]

mχ [GeV/c2]

Constrained by 

Overburden Scattering


“Too Slow”
Constrained by 




“Too Heavy”


nχ [cm−3]

χ

χ

γ
γ

γ

γ
γ

γ

γ
γ

γ

Adhikari, P., et al. 
"First direct detection 
constraints on 
Planck-scale mass 
dark matter with 
multiple-scatter 
signatures using the 
DEAP-3600 
detector." Physical 
Review Letters 128.1 
(2022): 011801


  




Axions as Dark Matter
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Axion Searches
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Motivated to solve strong 
CP problem.


Detect weak conversion 
of axions into microwave 
photons in the presence 
of a strong field. 


Detectors:

- Haloscopes (relic 

axions).

- Light-shining-through 

walls (lab axions).

- Helioscopes (solar 

axions).


⃗B

Ha
losc

opes

LSW

Helio
sc

opes



Axion Searches
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Many constraints on 
axion-photon coupling 
strength .


‣ Strong overlap with 
quantum sensor 
development.


gaγ

Courtesy of J. Monroe (ICHEP ’24)



Conclusions
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No concrete dark matter signals yet, however thanks to technology advances, direct 
detection searches are firmly in discovery mode!


From axions to very heavy dark matter: we are exploring dark matter candidates spanning 
~40 orders of magnitude!


Liquid noble detectors lead the charge in high mass WIMP searches and will reach 
neutrino floor within the next decade.

‣ Complementarity with high energy frontier.


Cryogenic experiments provide best opportunity to observe low mass (sub-GeV) WIMPs 
and dark matter candidates beyond WIMP paradigm.

‣ New (quantum) technologies continue to drive down energy thresholds to sub-eV 

level: probing brand new parameter space!




Back-Up
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Modulation Signals
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Sun moves through the Milky Way with a velocity of 
about vs ~ 220 km/s: boost of dark matter velocity 
distribution in the laboratory frame,


‣ “WIMP Wind” coming from the direction of Cygnus.


The Earth moves around the Sun with a velocity of 
about vE ~ 30 km/s, increasing the boost in summer 
and decreasing it in winter.


‣ Larger WIMP flux in summer compared to winter 
(~15% effect)

DAMA: Observes 
modulation, but not 
consistent with what is 
expected for DM-n 
scattering…


