

Marie-Hélène Schune IJCLab – CNRS Univ. Paris-Saclay on behalf of LHCb and Belle/Belle-II collaborations

Setting up the scene

New results : LFU tests, angular analyses and time-dependent CP violation

35th rencontres de Blois

Why rare decays ?

• Change of paradigm: not any more theory driven

- Which are the sources of flavour symmetry breaking we observed ?
- History is telling us that rare decays (FCNC) are powerful tools

Rule of the game

- Precisely predicted
- Precise measurements (as much as possible !)

What is rare ?

 $BR_{eff} < 10^{-6}$

Flavour Changing Neutral Currents

New Physics (examples)

Relative importance of the different diagrams varies with $q^2 = M^2(\ell^+\ell^-)$. Eg : photon pole dominates when $q^2 \rightarrow 0$

How NP would manifest ?

- Modification of the decay rates (\uparrow or \downarrow)
- Modification of the angular distributions
- New sources of CP violation

Potentially different for $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow se^+e^-$

Description using an effective field theory

$$H_{\rm eff} \propto V_{tb} V_{ts}^* \sum_i (C_i \mathcal{O}_i + C_i' \mathcal{O}_i')$$

 $O_i{}^{(^\prime)}$ operator encoding Lorentz structure

$$C_{i}^{(')} = C_{i}^{SM(')} + C_{i}^{NP(')}$$

QCD challenges:

- working with hadrons \Rightarrow local form factors
- qq loops ⇒ non-local form factors + non factorizable soft gluon corrections

$$C_{i}^{(')} = C_{i}^{SM(')} + C_{i}^{NP(')} + C_{i}^{had(')}$$

What to measure ?

In general BR are $O(10^{-7})$ \rightarrow LHC large production is clearly a plus \rightarrow comes with the cost of a very challenging experimental environment

• $b \rightarrow s \mu \mu$ channels :

- clean experimental signature
- precise experimental results on a large number of BR and angular observables in a fine q² binning

• $b \rightarrow s$ ee channels :

- low p_T electrons in the harsh LHC context
- limited number of results
- A corner of the phase space provides powerful constraints on C_7 '

LFU observables : R-ratios angular observables differences

Branching Ratios

Angular observables

theoretical cleanness

Most of the rare decays results are obtained by LHCb

Results obtained using 2011-2018 datasets (9 fb⁻¹)

 $\Delta p / p = 0.5 - 1.0\%$ $\Delta IP = (15 + 29/p_T[GeV]) \mu m$

 $\Delta E/E_{ECAL} = 1\% + 10\% / \sqrt{E[GeV]}$

Electron ID ~90% for ~5% $h \rightarrow e^{\pm}$ mis-id probability

Muon ID ~ 97% for 1-3% $\pi{\rightarrow}\mu$ mis-id probability

Current situation

Test of LFU on Branching Ratios in agreement with SM

Phys. Rev. D 108 (2023) 032002

- 5 to 10 % precision
- dominated by statistical uncertainty

Recent CMS result [CMS-PAS-BPH-22-005] less precise but in agreement $R(K) = 0.78^{+0.47}_{-0.23}$

Persistent tensions:

- BR measurements (a lot of modes)
- angular analyses : precise measurements in $K^*\mu\mu$

Use of data to also extract non-local contributions

q² - unbinned fit with parametrisation of the decay in terms of Wilson coefficients, Form Factors, and non-local contributions

q² unbinned amplitude analysis

- Non-local contributions seem larger than what has been assumed so far
- C₉ still shifted from SM
 - More data is needed

35th rencontres de Blois

Cherry picked results

Tests of LFU: 1. $R_{\phi} = \frac{BR(B_s \rightarrow \phi \mu \mu)}{BR(B_s \rightarrow \phi ee)}$ 2. $R_{K\pi\pi} = \frac{BR(B^{\pm} \rightarrow K\pi\pi \ \mu \mu)}{BR(B^{\pm} \rightarrow K\pi\pi \ ee)}$ 3. B⁰ \rightarrow K*ee angular analysis

Measurement of the photon polarization in $b \rightarrow s\gamma$: 1. $B_s \rightarrow \phi ee$ angular analysis 2. Time dependent CP violation (Belle II)

Some common features for the 4 LHCb analyses

- Full Run1 + Run2 statistics (9 fb⁻¹)
- e+e- in the final state
- Electron and charged hadrons identification very similar to $R_X (Phys. Rev. D 108 (2023) 032002)$ in most of the case $h \rightarrow e$ residual contamination extracted from data
- Dominating background is of combinatorial nature: removed using multivariate techniques relying on kinematical and vertexing variables

Tests of Lepton Flavour Universality : $B_s \rightarrow \phi \ell \ell$ and $B^{\pm} \rightarrow K \pi \pi \ell \ell$

[LHCb-PAPER-2024-032, in preparation]

[LHCb-PAPER-2024-046, in preparation]

Tests of LFU using $B_s \rightarrow \phi \ell \ell$: general strategy

$$R_{\phi}^{-1} = \frac{\frac{\mathcal{N}}{\mathcal{E}}B(B_{s} \to \phi ee)}{\frac{\mathcal{N}}{\mathcal{E}}B(B_{s} \to \phi J/\psi(ee))} / \frac{\frac{\mathcal{N}}{\mathcal{E}}B(B_{s} \to \phi \mu\mu)}{\frac{\mathcal{N}}{\mathcal{E}}B(B_{s} \to \phi J/\psi(\mu\mu))} \qquad \frac{\Gamma(J/\psi \to e^{+}e^{-})}{\Gamma(J/\psi \to \mu^{+}\mu^{-})} = 1 \ [PDG]$$

- Double ratio using the resonant channels \Rightarrow cancel out most of the systematics due to e/ μ differences
- Yields obtained from mass fits
- Efficiencies obtained from corrected MC using data-driven techniques
- Blind analysis in 3 q^2 (=M²($\ell \ell$)) regions
- Narrow ϕ resonance, no partially reconstructed hadronic background (" ϕ^{**} ")
- Combinatorial & double semi-leptonic backgrounds suppressed using multivariate classifiers
- Residual hadron \rightarrow e mids-ID background measured from data

 $R_{\phi}^{-1}(\text{low} - q^2) = 1.57 + 0.28_{-0.25} \pm 0.05$ $R_{\phi}^{-1}(\text{central} - q^2) = 0.91 + 0.20_{-0.19} \pm 0.05$ $R_{\phi}^{-1}(\text{high} - q^2) = 0.85 + 0.24_{-0.23} \pm 0.09$

In agreement with SM

35th rencontres de Blois

 $\psi(2S)$ leakage due to improper bremsstrahlung reconstruction

LHCb-PAPER-2024-032 in preparation

Similar analysis but using $B^{\pm} \rightarrow K\pi\pi \ell \ell$

LHCb-PAPER-2024-046 in preparation

One kinematic region $1.1 < q^2 < 7 \text{ GeV}^2/c^4$

$$R_{K\pi\pi}^{-1} = 1.31_{-0.17}^{+0.18} (\text{stat})_{-0.09}^{+0.12} (\text{syst})$$

Systematic uncertainty dominated by the modelling of mass distribution of the hadron→e mids-ID background

In agreement with SM

Angular analyses

Decay described by 3 angles and 8 q²-dependent parameters

 $\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1 - F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta \\ + \frac{1}{4}(1 - F_\mathrm{L})\sin^2\theta_K\cos2\theta_\ell \\ -F_\mathrm{L}\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi \\ -F_\mathrm{L}\cos^2\theta_K\sin2\theta_\ell\cos\phi + S_5\sin2\theta_K\sin\theta_\ell\cos\phi \\ + S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + S_5\sin2\theta_K\sin\theta_\ell\cos\phi \\ + \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\phi \\ + S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \end{bmatrix}$

 F_L , A_{FB} and the other six parameters are sensitive to $\mathcal{C}_{7,9,10}^{(\prime)}$ and Form Factors

 \overline{K}^*

 π^+/K

Angular analysis of $B^0 \rightarrow K^*ee$ in the central q² region

[LHCb-PAPER-2024-022, in preparation]

Modelling of the mass and angular distributions of all the components

 \Rightarrow Data-driven methods

the fit result:

19

$F_{ m L}$	$0.582 \pm 0.045 \pm 0.050$
S_3	$-0.000 \pm 0.042 \pm 0.023$
S_4	$-0.119 \pm 0.073 \pm 0.042$
S_5	$-0.077 \pm 0.054 \pm 0.033$
$A_{ m FB}$	$-0.146 \pm 0.052 \pm 0.035$
S_7	$-0.077 \pm 0.056 \pm 0.038$
S_8	$0.129 \pm 0.072 \pm 0.056$
S_9	$0.066 \pm 0.045 \pm 0.020$

[N. Gubernari, M. Reboud, D. Van Dyk, J. Virto, JHEP 09 (2022) 133 [M. Algueró, A. Biswas, B.Capdevila, S. Descotes-Genon, J. Matias, EPJC 83 (2023) 7, 648

In agreement with SM prediction

LFU test

- Use the set of observables which are less sensitive to Form Factors
- Compare with the results from the muon fit (as in PRL 132 (2024) 131801 but without S-wave for overall coherence)

$$Q_i = P_i^{(\mu)} - P_i^{(e)}$$

consistent with LFU conservation

in agreement with the SM but also with the K* μ μ results.

Form factors constrained from [JHEP 12 (2023) 153] and non-local QCD terms from [JHEP 02 (2021) 088, JHEP 09 (2022) 133] Hadronic contributions shared between $K^*\mu\mu$ and K^*ee

Measurement of the photon polarisation in b \rightarrow sy transitions

[LHCb-PAPER-2024-030, in preparation]

Belle II [arXiv:2407.09139]

Angular analysis of $B_s \rightarrow \phi(\rightarrow KK)ee$

[LHCb-PAPER-2024-030, in preparation]

$$\begin{split} \frac{1}{\frac{d(\Gamma+\bar{\Gamma})}{dq^2}} \frac{d^3(\Gamma+\bar{\Gamma})}{d\cos\theta_l d\cos\theta_k d\tilde{\phi}^1} \\ &= \frac{9}{32\pi} \left\{ \frac{3}{4} \left(1-F_L\right) \sin^2\theta_k + F_L \cos^2\theta_k \\ &+ \left[\frac{1}{4} \left(1-F_L\right) \sin^2\theta_k - F_L \cos^2\theta_k \right] \cos 2\theta_l \\ &+ \frac{1}{2} \left(1-F_L\right) A_T^{(2)} \sin^2\theta_k \sin^2\theta_l \cos 2\tilde{\phi} \\ &+ \left(1-F_L\right) A_T^{ReCP} \sin^2\theta_k \cos\theta_l \\ &+ \frac{1}{2} \left(1-F_L\right) A_T^{ImCP} \sin^2\theta_k \sin^2\theta_l \sin 2\tilde{\phi} \right\} \\ A_T^{(2)}(q^2 \to 0) &= \frac{2Re(C_7C_7^{'*})}{|C_7|^2 + |C_7'|^2} + \Delta_1^2 \\ A_T^{ImCP}(q^2 \to 0) &= \frac{2Im(C_7C_7^{'*})}{|C_7|^2 + |C_7'|^2} + \Delta_2^2 \\ \Delta_i \, due \, to \, \Delta m_s \, and \, d\Gamma_s \end{split}$$

35th rencontres de Blois

q² bin choice similar to previous $B_d \rightarrow K^*0(\rightarrow K^+\pi^-)ee : 10 \text{ MeV} < m_{ee} < 500 \text{ MeV}$

Background mostly of combinatorial nature due to the very specific kinematical region

The radiative decay with a converted photon is a nice control channel : $B_s \rightarrow \phi(\rightarrow K^+K^-)\gamma_e$

4D fit : m(KKee), $\cos\theta_{\rm K}$, $\cos\theta_{\ell}$ $\tilde{\phi}$

$$\begin{split} A_{\rm T}^{^{(2)}} &= -0.045 \pm 0.235 \pm 0.014 \,, \\ A_{\rm T}^{ImCP} &= 0.002 \pm 0.247 \pm 0.016 \,, \\ A_{\rm T}^{ReCP} &= 0.116 \pm 0.155 \pm 0.006 \,, \\ F_{\rm L} &< 11.5\% @ 90\% \ {\rm CL} \,. \end{split}$$

effective region: $0.0009 < q^2 < 0.2615 \text{ GeV}^2/c^4$

in good agreement with the SM

Mixing-induced CP asymmetries in B⁰ \rightarrow K*⁰ (\rightarrow K⁰ π^{0}) γ

Belle II (362 fb⁻¹) arXiv:2407.09139

$$\mathcal{P}_{\rm TD}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{1 + q \cdot [S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)]\}, \quad q = +1 \ (-1) \ B^0(\overline{B^0})$$

80

10

The photon polarisation in b \rightarrow sy transitions is known with a precision of ~ 4%

All measurements are in good agreement

[LHCb-PAPER-2024-030, in preparation]

30

Summary: a lot of 'for the first time'

35th rencontres de Blois

• Branching ratio measurements :

- tensions still present in b \rightarrow s $\mu \mu$
- similar BR values for $\ell = e$ or $\ell = \mu$: new modes being added : R_{ϕ} and $R_{K \pi \pi}$.

LFU holds at the few % level

In agreement both with the SM and B^0 $\rightarrow K^{*0} \mu \mu$

A set of very different analyses.

~4% precision. In agreement with SM.

- $B^0 \to K^{\ast 0}$ ee angular analysis in the central q^2 region for the first time
- measurement of the photon polarisation in $b \rightarrow s\gamma$:
 - $B_s \rightarrow \phi ee$ in the very low-q2 region (~12% precision)
 - $B^0 \rightarrow K^{*0} (\rightarrow K^0 \pi^0) \gamma$ CP violation time dependent analysis from Belle-II

Thank you for your attention

back-up slides

A game of couplings and scale

 Flavour Changing Neutral Currents: mediated by box and loop diagrams (strongly suppressed in the SM): New Physics can compete and modify the properties of the decays

35th rencontres de Blois

• Access to larger scales than direct searches

B0 → K*ee Fit set-up

Double Semileptonic and combinatorial backgrounds: Use of $B^0 \rightarrow K^*e\mu$ data sample, wider mass range and BDT

Signal : from simulation for the mass distribution, the angular and q_c^2 acceptance

Misidentified hadronic decays : Use the "Pass-Fail" method of R_x ([PRL 131 (2023) 051803, PRD 108 (2023) 032002]) DOUBLE SEMILEPTONIC (DSL) DECAYS $B^{0} \rightarrow D^{-}(\rightarrow K^{*0}e^{-}\bar{\nu}_{e})e^{+}\nu_{e}$ SIGNAL COMBINATORIAL MisidentifiedHADRONIC DECAYS $B^{0} \rightarrow K^{*0}\pi^{-}(\pi^{0},\gamma)X$ $m(K^{+}\pi^{-}e^{+}e^{-})[MeV/c^{2}]$

partially reconstructed background: Phase Space MC reweighted using B \rightarrow K $\pi \pi J/\psi (\rightarrow \mu \mu)$ background-substracted data

$Bs \rightarrow Phiee systematics$

Source of systematic	$A_{ m T}^{(2)}$	A_{T}^{ImCP}	A_{T}^{ReCP}	$F_{ m L}$
$\Delta\Gamma_s/\Gamma_s$	0.008	< 0.001	< 0.001	< 0.001
Corrections to simulation	0.002	< 0.001	< 0.001	0.010
Acceptance function modelling	< 0.001	< 0.001	0.001	0.002
Simulation sample size for acceptance	0.006	0.008	0.005	0.002
Background contamination	0.009	0.014	0.004	0.006
Angles resolution	-0.005	< 0.001	-	-
Total systematic uncertainty	0.014	0.016	0.006	0.012
Statistical uncertainty	0.235	0.247	0.155	+0.056

Results dominated by statistical uncertainty

Add a precise information in the overall measurement of the photon polarisation in $b \rightarrow s\gamma$ transitions

- Mixing-induced CP asymmetries in $B^0 \rightarrow K^{*0} (\rightarrow K^0 \pi^0) \gamma$
- Mixing-induced CP asymmetries in $B_s \rightarrow \Phi \gamma$
- $B \rightarrow K^{*0}(\rightarrow K^+ \pi)$ ee angular analysis in the very-low q² region
- $B_s \rightarrow \Phi ee$ angular analysis in the very-low q² region
- via the angle ϕ
- $\Lambda_{\rm b} \rightarrow \Lambda \gamma$ decay + Λ weak decay

B0->K*ee : Systematic uncertainties (given as % of statistical uncertainties)

Source	F_L	S_3	S_4	S_5	A_{FB}	S_7	S_8	S_9
DSL and comb.	0.687	0.372	0.297	0.321	0.449	0.177	0.668	0.294
Part. reco.	0.091	0.039	0.039	0.049	0.051	0.021	0.034	0.037
Had. misid.	0.376	0.254	0.107	0.178	0.155	0.336	0.129	0.141
Effective acceptance	0.399	0.249	0.419	0.410	0.331	0.508	0.393	0.214
Signal mass modelling	0.254	0.057	0.071	0.111	0.122	0.044	0.045	0.062
Charmonium backgrounds	0.179	0.039	0.045	0.062	0.137	0.032	0.032	0.047
S-wave component	0.351	0.050	0.129	0.084	0.105	0.159	0.008	0.103
B^+ veto	0.499	0.133	0.152	0.179	0.242	0.159	0.154	0.117
Fit bias	0.007	0.008	0.030	0.038	0.042	0.007	0.019	0.031
Total	1.118	0.540	0.570	0.601	0.665	0.676	0.804	0.430

Run1 and Run2 data taking

- Running with luminosity levelling at 4. 10³² cm⁻²s⁻¹ (x2 design luminosity)
- About 1.5 interaction per bunch crossing
- 9 fb⁻¹ collected

Branching fractions for $b \rightarrow s \mu\mu$ transitions

(low and central q^2).

b-baryons: BF in agreement with LQCD (high-q²). Lack of precise predictions in the rest of phase space.

Predictions uncertainties correlated between bins

35th rencontres de Blois

Angular analyses for $b \rightarrow s \mu\mu$ transitions

 $B^+ \rightarrow K^{\star +} \mu \mu$

Very clean signal peaks.

Still round for improvements on the experimental side:

- whole Run1 + Run2 dataset for all the modes
- Add more modes (eg $\Lambda_b \rightarrow \Lambda(1520) \mu \mu$)

Bremsstrahlung emission is significant for electrons

35th rencontres

Energy loss $\propto E_e$ Energy loss \propto material

 \Rightarrow Use of a recovery algorithm

Before the magnet

- electron can be swept out (=lost !)
- kinematics are "wrong"

After the magnet

• not an issue

Hardware trigger is very different for electrons and muons

Larger ECAL occupancy \rightarrow tighter thresholds for electrons than for muons:

•e pT > 2700/2400 MeV •µ pT > 1700/1800 MeV

Effect mitigated triggering Independently of Signal

LHCb-Upgrade I

Luminosity x5 wrt Run2 5.5 visible interactions/crossing Higher track multiplicity from ~<70> to ~<180>)

No more hardware trigger (full detector readout at 40 MHz) Tracking & PID detectors modified/replaced Higher granularity

In January 2023, a loss of control of the LHC primary vacuum system

 \Rightarrow plastic deformation of the RF foil separating VELO from LHC.

 \Rightarrow significant impact on 2023 physics programme

2022 – 2023 : commissioning and understanding the new detector

```
2024 : a lot of data !
```