Higgs & Flavour

Joe Davighi, CERN

24th October, Rencontres de Blois 2024

If you remove the Higgs, the Standard Model is a gauge theory with x3 $g_i = O(1)$. The Higgs-less SM is completely natural!

Hierarchy problemFlavour puzzleStrong CP problem[massless quarks]

Higgs = key to BSM, both theoretically & experimentally (modulo dark sectors)

*The Higgs has an unnaturally small **mass** parameter:

Large hierarchy: $\mu^2 \ll \Lambda^2_{high \ scales}$

[e.g. GUT scale, flavour scale, neutrinos, Planck...]

*The Higgs has an unnaturally small **mass** parameter:

Large hierarchy: $\mu^2 \ll \Lambda^2_{high \ scales} \Rightarrow$ Compositeness or SUSY as low scale as possible [e.g. GUT scale, flavour scale, neutrinos, Planck...]

Higgs
$$\cdots$$
 Higgs $\Rightarrow \delta M_h^2 \sim \frac{1}{16\pi^2} g^2 M_X^2$

Compositeness:

- Loops cut off by compositeness scale *f*
- To get $m_h \ll m_{\rm res}$, need Higgs = pNGB associated with global symmetry breaking
- E.g. $SO(5) \rightarrow SO(4)$
- Explicit breaking by $y_t \& g_{1,2}$ generates m_h^2 at 1-loop

 $\delta m_h^2 \sim \frac{f^2}{16\pi^2} \left(\# n_c y_t^2 M_T^2 - \# g_1^2 M_\rho^2 \right)$

Supersymmetry:

Inclusion of superpartner loops removes quadratic sensitivity to UV cut-off

Most natural expectation: $M_* \leq (\text{loop factor}) m_h \sim \text{few TeV}$

The BSM Flavour Puzzle

While the hierarchy problem points to scale $M_* \sim \text{TeV}$, flavour points to much higher scales!

The BSM Flavour Puzzle

While the hierarchy problem points to scale $M_* \sim \text{TeV}$, flavour points to much higher scales!

Therefore any solution to hierarchy problem needs non-trivial flavour structure

E.g. Minimal Flavour Violation (MFV): BSM couplings $C_{ij} \sim \delta_{ij} + \cdots$, with ... built from SM Yukawas

MFV:
$$\frac{1}{\Lambda_{sd}^2} \sim y_t^4 (V_{31} V_{32}^*)^2 \frac{1}{\Lambda_{NP}^2} \sim \left(\frac{10^{-5}}{\Lambda_{NP}}\right)^2$$
 is good enough flavour protection!

We are now probing M_* directly at the LHC

*The Higgs has an unnaturally small **mass** parameter:

Large hierarchy: $\mu^2 \ll \Lambda_{high \, scales}^2 \Rightarrow$ compositeness or SUSY as low scale as possibleLittle hierarchy: $\mu^2 \ll \Lambda_{SM}^2 \sim \text{TeV}^2 \Rightarrow$ accept it! or try even clever-er model-building

E.g. Durieux, McCullough, Salvioni 2110.06941, 2202.01228

*The Higgs has an unnaturally small **mass** parameter:

Large hierarchy: $\mu^2 \ll \Lambda^2_{high \, scales} \Rightarrow$ compositeness or SUSY as low scale as possibleLittle hierarchy: $\mu^2 \ll \Lambda^2_{SM} \sim \text{TeV}^2 \Rightarrow$ accept it! or try even clever-er model-building

*Most of the Higgs couplings are generating **flavour**:

 $y_{q_3t_3} \sim 1$; all other x12 physical $y_{ij} \ll 1$ $\Rightarrow \mathcal{L}_{SM}$ has approx. $U(2)^n$ flavour symmetry

Is there a dynamical explanation? = "SM flavour puzzle"

 y_{ij} = marginal couplings: do not clearly point to a scale, unlike μ^2

$$Y_u \sim \left(\begin{array}{c} < 0.01 & 0.04 \\ \uparrow & \uparrow 1 \end{array} \right)$$

 V_{cb} provides largest U(2)-breaking spurion Then y_2/y_3 is next largest

*The Higgs has an unnaturally small **mass** parameter:

Large hierarchy: $\mu^2 \ll \Lambda^2_{high \, scales} \Rightarrow$ compositeness or SUSY as low scale as possibleLittle hierarchy: $\mu^2 \ll \Lambda^2_{SM} \sim \text{TeV}^2 \Rightarrow$ accept it! or try even clever-er model-building

*Most of the Higgs couplings are generating **flavour**:

 $y_{q_3t_3} \sim 1$; all other x12 physical $y_{ij} \ll 1$ $\Rightarrow \mathcal{L}_{SM}$ has approx. $U(2)^n$ flavour symmetry

Is there a dynamical explanation? = "SM flavour puzzle"

 y_{ij} = marginal couplings: do not clearly point to a scale, unlike μ^2

$$Y_u \sim \left(\begin{array}{ccc} < 0.01 & 0.04 \\ \uparrow & \uparrow 1 \end{array} \right)$$

 V_{cb} provides largest U(2)-breaking spurion Then y_2/y_3 is next largest

BUT since Higgs is origin of hierarchy problem & flavour puzzle: maybe they have a **joint solution** near TeV?

Rest of the Talk

- 1. Introduction: Higgs-centric BSM
- 2. Higgs into Flavour
 - Which flavour symmetry? The appeal of U(2)s over MFV
 - Case study: partial compositeness solutions to hierarchy problem, MFV vs U(2)
 - Future prospects esp. FCC-ee
- 3. Flavour into Higgs
 - Flavour non-universal gauge interactions as origin of U(2), solving SM + BSM flavour puzzles
 - Testing these flavour models via electroweak precision
 - General Lessons from SMEFT regarding EW precision, and FCC-ee

2. Higgs into Flavour

BSM Flavour Puzzle: **Beyond MFV**

• MFV [$C_{ij} \sim \delta_{ij} + \cdots$] now probed to 10 TeV by LHC direct searches: driven by valence quarks

Example: High- p_T Drell-Yan tails $pp \rightarrow ll \quad \frac{\Lambda}{c_{33}} \gtrsim 3$ TeV

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, <u>2207.10714</u> Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, <u>2207.10756</u>

BSM Flavour Puzzle: Beyond MFV

• MFV $[C_{ij} \sim \delta_{ij} + \cdots]$ now probed to 10 TeV by LHC direct searches: driven by valence quarks

From MFV to U(2): the **flavour** *non-universal* path to BSM...

1. Just as good flavour protection as MFV \odot $C_{ij} \sim \begin{pmatrix} \epsilon \\ 0 \end{pmatrix} + \cdots = 2$. Direct search bounds weaker: $\Lambda_{U(2)} \sim 1 \text{ TeV vs } \Lambda_{MFV} \sim 10 \text{ TeV}$ \odot 3. Same global symmetry as Yukawa! Also explain SM flavour puzzle? 🙂 15

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, 2207.10714

Davighi, Blois 2024

The U(2) vs MFV advantages are totally general; not just for semi-leptonic operators (we'll return to theories that solve the flavour puzzle later)

But how does the phenomenology play out in "explicit" solutions to the hierarchy problem?

Case study: Composite Higgs from strongly dynamics; U(2) vs MFV

Main reference here: Glioti, Rattazzi, Ricci, Vecchi, <u>2402.09503</u>; see also Stefanek, <u>2407.09593</u>

How to generate flavour in Composite Higgs Models?

The problem with elementary fermions: $L_{\text{strong}} \supset \frac{1}{\Lambda^{d-1}} \overline{q} O_H u + \Lambda^{4-d'} O_H O_H^{\dagger} + \frac{1}{\Lambda^2} (\overline{q}q)^2$ Cannot have Λ low due to

flavour bounds

 O_H is a composite scalar operator with quantum numbers of Higgs. Want $d \approx 1$ to get large top Yukawa Want $O_H O_H^{\dagger}$ to be irrelevant! But $d \approx 1$ (quasi-free) implies $d' \approx 2d \approx 2$

How to generate flavour in Composite Higgs Models?

The problem with elementary fermions: $L_{\text{strong}} \supset \frac{1}{\Lambda^{d-1}} \bar{q} O_H u + \Lambda^{4-d'} O_H O_H^{\dagger} + \frac{1}{\Lambda^2} (\bar{q}q)^2$ Cannot have Λ low due to flavour bounds

 O_H is a composite scalar operator with quantum numbers of Higgs. Want $d \approx 1$ to get large top Yukawa

Want $O_H O_H^{\dagger}$ to be irrelevant! But $d \approx 1$ (quasi-free) implies $d' \approx 2d \approx 2$

Partial Compositeness is a solution: $L \supset \lambda_q^{ia} \bar{q}_i O_a^q + \lambda_u^{ia} \bar{u}_i O_a^u + \bar{O}_a^q O_H O_b^u$

Kaplan, <u>1991</u> Review: Panico, Wulzer, 1506.01961

Yukawa couplings now generated by **relevant** operators

Aside: Flavour from Anarchy?

Partial compositeness even promised a *dynamical solution* to *flavour puzzle*:

- The $\lambda_q^{ia} \bar{q}_i O_a^q$ mixing operators run with scale
- If λ_q^{ia} anarchic at high scale Λ_{high} , slight differences in anomalous dimensions of O_a^q transmute to exponential hierarchies in the resulting "proto-Yukawas" at scale m_*

$$\lambda_{\psi}^{ia}(m_*) \simeq \lambda_{\psi}^{ia}(\Lambda) \left(\frac{m_*}{\Lambda}\right)^{\gamma_{\psi}^a} \equiv \lambda_{\psi}^{ia}(\Lambda) e^{-\gamma_{\psi}^a L}, \qquad L \equiv \ln \Lambda / m_*$$

- BUT this entails large flavour violation also at m_{st}
- Strongest bound from neutron EDM $\Rightarrow M_* \gtrsim 20 \div 25 \text{ TeV}$

[Even assuming 1-loop suppressed quark dipole operators]

- Such a high scale degrades this as a solution to the hierarchy problem AND is untestable in colliders
- We **need** a flavour symmetry to bring down m_* . Let's compare MFV vs. U(2)-like

Partial Compositeness with MFV: $M_* \gtrsim 7 \div 8 \text{ TeV}$

MFV-like flavour symmetry [+ custodial $SU(2)_L \times SU(2)_R$ symmetry to protect m_W/m_Z]

Di-jet constraints from **LHC**, driven by light quark couplings

 P_{LR} denotes an extensional of custodial by a `left-right' exchange symmetry [kills corrections to Zb_Lb_L vertices]

Key point: strongest current bounds are driven by couplings to **light generation fermions** OR **flavour violation**, not EW constraints

Partial Compositeness with $U(2): M_* \gtrsim 1 \div 2 \text{ TeV}$

Label	Observable
A	$pp \rightarrow jj$
В	$\Delta F = 2 \left(B_d \right)$
\mathbf{C}	$B_s \to \mu^+ \mu^-$
D	nEDM
E	$B^0 \to K^{*0} e^+ e^- \ (C'_7)$
F	$B \to X_s \gamma \ (C_7)$
G	W-coupling

Going from MFV to U(2), we decouple the strong LHC constraints: dominant bounds now heavy-to-light quark flavourviolation + universal EW constraints

Davighi, Blois 2024

Future Prospects: HL-LHC, FCC-ee

- FCC-ee "tera-Z" run: approx. 10⁵ times LEP dataset on Z-pole
- With this precision, RG-running into EWPOs at 1-loop (and even 2-loop) is crucially important

• All sectors contribute to EWPO bounds at this precision, including e.g. 4 top operators which shift m_W at NLL

Even current EWPOs give stronger constraint on $O_{tt} \sim (t\bar{t})^2$ than LHC $pp \rightarrow t\bar{t}$ and $pp \rightarrow t\bar{t}t\bar{t}$ measurements! c.f. also Allwicher et al, 2302.11584

Future Prospects: HL-LHC, FCC-ee

- FCC-ee "tera-Z" run: approx. 10⁵ times LEP dataset on Z-pole
- With this precision, RG-running into EWPOs at 1-loop (and even 2-loop) is crucially important

• All sectors contribute to EWPO bounds at this precision, including e.g. 4 top operators which shift m_W at NLL

Even current EWPOs give stronger constraint on $O_{tt} \sim (t\bar{t})^2$ than LHC $pp \rightarrow t\bar{t}$ and $pp \rightarrow t\bar{t}t\bar{t}$ measurements!

Future Prospects: HL-LHC, FCC-ee

- FCC-ee "tera-Z" run: approx. 10⁵ times LEP dataset on Z-pole
- With this precision, RG-running into EWPOs at 1-loop (and even 2-loop) is crucially important

• All sectors contribute to EWPO bounds at this precision, including e.g. 4 top operators which shift m_W at NLL

Even current EWPOs give stronger constraint on $O_{tt} \sim (t\bar{t})^2$ than LHC $pp \rightarrow t\bar{t}$ and $pp \rightarrow t\bar{t}t\bar{t}$ measurements!

3. Flavour into Higgs/EW

BSM Flavour Puzzle: Beyond MFV

• MFV [$C_{ij} \sim \delta_{ij} + \cdots$] now probed to 10 TeV by LHC direct searches: driven by valence quarks

From MFV to U(2): the **flavour** *non-universal* **path** to BSM...

$$C_{ij} \sim \begin{pmatrix} \epsilon \\ & \epsilon \\ & 1 \end{pmatrix} + \cdots \qquad \begin{array}{c} 1. & \text{Just as good flavour protection as MFV} & \textcircled{O} \\ 2. & \text{Direct search bounds weaker: } \Lambda_{U(2)} \sim 1 \text{ TeV vs } \Lambda_{\text{MFV}} \sim 10 \text{ TeV} & \textcircled{O} \\ 3. & \text{Same global symmetry as Yukawa! Also explain SM flavour puzzle?} \\ & \text{Davighi, Blois 2024} \end{array}$$

So far U(2) has been imposed. What could be its origin?

Flavour non-universal [3 vs 1+2] **gauge** symmetry!

A finite class of models is provided by **flavour deconstruction**

$$\begin{array}{ll} G_{1} \times G_{2} \times G_{3+H} & \rightarrow G_{12} \times G_{3+H} & \langle \phi_{12} \rangle \sim 100(0...) \ \mathrm{TeV} \\ & \rightarrow G_{\mathrm{SM}} & \langle \phi_{23} \rangle \sim 1(0...) \ \mathrm{TeV} \end{array}$$

Solves the SM flavour puzzle

Original example: Li, Ma, 1981

Breaking pattern $G_A \times G_B \rightarrow G_{A+B}$, given scalar ϕ , is generic for simple G! Goursat, 1889 Craig, Garcia-Garcia, Sutherland, <u>1704.07831</u>

$$\Rightarrow y_{23} \sim \frac{v_{23}}{M_{\Psi}} = \epsilon_{23}$$

Non-decoupling phenomenology

- Predicts non-universal, charged heavy gauge bosons in adj G, gauge couplings $\geq g_i = O(1)$
- Cannot be decoupled $[M \to \infty]$ without creating a hierarchy problem $\delta m_h^2 \sim g^2 M^2 / 16 \pi^2$

$$H \xrightarrow{W_{23}} H \xrightarrow{W_{23}} H \xrightarrow{\phi_{23}} H \xrightarrow{\phi_{23}} H \xrightarrow{\phi_{23}} H$$

Survey of Flavour Deconstruction models

	Deconstructed force	SU(3)	$SU(2)_L$	$SU(2)_R$	$U(1)_Y$	$U(1)_{B-L}$
Flavour	$ V_{cb} \ll 1$	\checkmark	\checkmark	×	\checkmark	\checkmark
	$y_i \ll y_3$	×	\checkmark	\checkmark	\checkmark	×
► EW	Natural upper limit of $ \tan \theta M$	90 TeV	20 TeV	40 TeV	40 TeV	500 TeV
	EWPOs order	1-loop	Tree	Tree	Tree	1-loop
Davighi, Isido	× ×))			

"Finite naturalness" limits on M_X from requiring the finite part of $\delta m_h^2 \leq 1 \text{ TeV}^2$

Survey of Flavour Deconstruction models

		Deconstructed force	SU(3)	$SU(2)_L$	$SU(2)_R$	$U(1)_Y$	$U(1)_{B-L}$
	Flavour	$ V_{cb} \ll 1$	\checkmark	\checkmark	×	\checkmark	\checkmark
		$y_i \ll y_3$	×	\checkmark	\checkmark	\checkmark	×
[► EW	Natural upper limit of $ \tan \theta M$	90 TeV	20 TeV	40 TeV	40 TeV	500 TeV
		EWPOs order	1-loop	Tree	Tree	Tree	1-loop
_	Davighi, Isidori 2303.01520 $Y \sim \begin{pmatrix} x \\ x \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix}$						

"Finite naturalness" limits on M_X from requiring the finite part of $\delta m_h^2 \leq 1 \text{ TeV}^2$

Motivates a **joint solution** with the **hierarchy problem.** Example: **flavour deconstructed compositeness**

Covone, Davighi, Isidori, Pesut, 2407.10950

- See Marko Pesut's parallel talk
- Delivers a gauge explanation for the U(2) protection that we saw can lower compositeness scale
- More freedom for tuning in minimal composite Higgs $m_h^2 \sim \frac{1}{16\pi^2} [\#y_t^2 M_T^2 \#g_{R,3}^2 M_\rho^2 + \#g_{R,3}^4 v_\phi^2]$
- To explain $y_2 \ll y_3$, the heavy fermion is 100s of TeV but gives no radiative contribution to Higgs mass thanks to compositeness near TeV!

Phenomenology of Flavour Deconstructed Gauge Bosons

	Deconstructed $SU(2)_L$	Deconstructed $U(1)_Y$
Electroweak: Z-pole & W-pole	9 TeV (5 TeV if exc. m_W)	2 TeV
Flavour: $B_{s} ightarrow \mu\mu$ (up-alignment)	7.5 TeV	2 TeV
High p_{T} : Drell–Yan pp $ ightarrow$ ee, $\mu\mu, au au$	4.5 TeV	3.5 TeV
EW projection FCC-ee: on and off Z-pole & W-pole	30 TeV	7 TeV
	Davighi, Gosnay, Miller, Renner 2312.13346	Davighi, Stefanek 2305.1628

Tree-level shifts in Z-pole observables & m_W means EW constraints often stronger than flavour!

Key observable given current data is e.g. the W mass (+ Z-pole measurements from LEP etc)

- Deconstructing $SU(2)_L$ gives $\delta m_W < 0$
- Deconstructing $U(1)_Y$ gives $\delta m_W > 0$

Phenomenology of Deconstructed $SU(2)_L$ gauge bosons

	Deconstructed $SU(2)_L$	Deconstructed $U(1)_Y$
Electroweak: Z-pole & W-pole	9 TeV (5 TeV if exc. m_W)	2 TeV
Flavour: $B_s \rightarrow \mu \mu$ (up-alignment)	7.5 TeV	2 TeV
High p_{T} : Drell–Yan pp $ ightarrow$ ee, $\mu\mu$, $ au au$	4.5 TeV	3.5 TeV
EW projection FCC-ee: on and off Z-pole & W-pole	30 TeV	7 TeV

Collider: LHC Drell-Yan Electroweak: fit to Z pole and m_W Flavour: $B_s \rightarrow \mu \mu$ (up-alignment) Flavour: $B_s \rightarrow \mu \mu$ ([V_d]₂₃= V_{cb} /2) Naturalness: $\delta m_H^2 > \text{TeV}^2$

--- Naturalness: $\delta m_H^2 = (125 \text{ GeV})^2$

Sp(6) matched points

Davighi, Gosnay, Miller, Renner <u>2312.13346</u> See also Capdevila, Crivellin, Lizana, Pokorski <u>2401.00848</u>

Phenomenology of Deconstructed $SU(2)_L$ gauge bosons

	Deconstructed $SU(2)_L$	Deconstructed $U(1)_Y$
Electroweak: Z-pole & W-pole	9 TeV (5 TeV if exc. m_W)	2 TeV
Flavour: $B_s \rightarrow \mu \mu$ (up-alignment)	7.5 TeV	2 TeV
High p_{T} : Drell–Yan pp $ ightarrow$ ee, $\mu\mu$, $ au au$	4.5 TeV	3.5 TeV
EW projection FCC-ee: on and off Z-pole & W-pole	30 TeV	7 TeV

Davighi, Gosnay, Miller, Renner <u>2312.13346</u> See also Capdevila, Crivellin, Lizana, Pokorski <u>2401.00848</u>

The power of tera-Z: general lessons from the SMEFT

The power of tera-Z: general lessons from the SMEFT

The power of tera-Z: general lessons from the SMEFT

Approach 2: integrate out *any* particle that gives dimension-6 SMEFT operators, and it runs into EWPOs

Allwicher, McCullough, Renner, <u>2408.03992</u>

Slide from Matthew McCullough @ CERN EP/TH Faculty Meeting, Sep 2024

Conclusions

- 1. The Higgs remains central motivation for high-energy BSM
- 2. Flavour and Higgs/EW physics are inextricably connected
- 3. Flavour provides key experimental probes of Composite Higgs solutions to hierarchy problem
- 4. EWPOs provide key experimental tests of "deconstruction" theories for the flavour puzzle
- 5. Fruitful to pursue flavour non-universal models that solve flavour puzzle and hierarchy problem simultaneously, even if they appear complicated...
- 6. Tera-Z run at FCC-ee will tie together Higgs and flavour like never before!