

ATLAS measurements of Drell Yan processes

Mingzhe Xie

On behalf of ATLAS collaboration

2024.10.20

Drell-Yan process

• Proposed in 1970s, play an important role in both electroweak, PDF and QCD

- Electroweak precision measurement
 - W mass and width at 7TeV
- **QCD and Proton inner structure (PDF)**
 - <u>W, Z cross sections and their ratio</u> at 13.6 TeV
 - Z+b/c jets cross sections
 - W, Z pT distribution
- New physics search
 - Missing transverse momentum
 +jets cross sections

·

2024/10/15

W boson mass and width at $\sqrt{S} = 7$ TeV

W boson mass

- As a fundamental parameter of standard model (SM), crucial to both validation of standard model and probe for potential new physics.
- Two most precise measurements:
 - CDF: differ from SM prediction around 7σ
 - CMS: agree well with SM.

• W decay width $arGamma^W$

- Comparison between measured value and SM prediction probe for new particles
- Current world average 2085 ± 42 MeV from LEP-2 and Tevatron, **NO** LHC measurements

 Δr represents the radiative corrections within SM and the extensions of it.

 $M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_W} \left(1 + \Delta r \right)$

W mass reanalysis using 7 TeV data

Previous result

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11(\text{exp. syst.})$

• χ^2 offset method

$$\pm$$
 14 (mod. syst.) MeV

 $= 80370 \pm 19 \,\mathrm{MeV},$

- Major updates
 - **Profile likelihood** $\mathcal{L}(\vec{n}|\mu,\vec{\theta}) = \prod_{i} \prod_{j} \operatorname{Poisson}\left(n_{ji}|\nu_{ji}(\mu,\vec{\theta})\right) \cdot \operatorname{Gauss}\left(\vec{\theta}\right)$, representing experimental
- Simultaneous fit of mw and nuisance parameters representing experimental and modelling uncertainties

Fitting strategy

	Nuisanse parameters	Fitting Range
p_T^l	214	30-50GeV
m_T	223	60-100GeV

 p_T^W modelling validated with the latest measurement

- Combined by BLUE method with the correlation estimated from fluctuated toys $\rho \sim 50.4\% \rightarrow w(p_T^l) \sim 86\%$ (for CT18NNLO)
- Final result dominated by p_T^l fit

New W mass result at $\sqrt{S} = 7$ TeV

• A dependence on the PDF choice is tested

	CT14	CT18	CT18A	MMHT2014	MSHT20	NNPDF3.1	NNPDF4.0	ATLASpdf21
Central value	80363.6	80366.5	80357.2	80366.2	80359.3	80349.6	80345.6	80367.6
Total unc.	15.9	15.9	15.6	15.8	14.6	15.3	14.9	16.6

CT18 is chosen as the baseline

 $m_W = 80366.5 \pm 9.8 \text{ (stat.)} \pm 12.5 \text{ (syst.)} \text{ MeV} = 80366.5 \pm 15.9 \text{ MeV},$

Central value decreased by 3 MeV, total uncertainty reduced by 3 MeV (16%)

5

W width measurement at $\sqrt{S} = 7$ TeV

• Same strategy used as m_W measurement

- $\Gamma_W = 2202 \pm 32 \text{ (stat.)} \pm 34 \text{ (syst.) MeV} = 2202 \pm 47 \text{ MeV},$ $w(m_T) \sim 87\% \text{, dominated by } m_T \text{ fit}$
- First measurement at LHC, most precise experimental results at present

Simulaneously determination of m_W and Γ_W , yield $m_W = 80354.8 \pm 16.1 \text{ MeV}$ $\Gamma_W = 2198 \pm 49 \text{ MeV},$

 p_T^W and p_T^Z at $\sqrt{S} = 5.02/13$ TeV

- A sensitive test of QCD
 - higher order corrections
 - non-perturbative effects such as the primordial k_T of the incoming partons
- $p_T^V \leq 30$ GeV are particularly important for the measurement of W mass
 - can be used to tune QCD model which affects the p_T^l and m_T distributions

Strategy

- To reduce pile-up, low $< \mu >$ data was used, 255 pb^{-1} at 5.02 TeV, 338 pb^{-1} at 13 TeV
- Both electron and muon final states used
- p_T^W unfolded from hadronic recoil \vec{u}_T
- p_T^Z measured through the dilepton system p_T^{ll}
- Hadronic recoil calibration
 - $\vec{u}_T = -\vec{p}_T^V$ is valid for both W and Z
 - Well-measured dilepton system can thus be used to calibrate the hadronic recoil response, and the unfolded p_T^{ll} distribution provides a cross-check of the p_T^Z spectrum measured from u_T

 p_T^W and p_T^Z at $\sqrt{S} = 5.02$ TeV

Data vs various PDF predictions

- DYTURBO generally agrees well with data
- PDF predictions have only small difference

Data vs various MC predictions

- MC predictions tuned to 7 TeV data (Powheg+Pythia8 AZNLO, Pythia8 AZ) agrees well with data in low p_T
- Sherpa2.2.5 matches data best at high p_T
- Powheg+Herwig7 does not perform well

2024/10/15

 p_T^W and p_T^Z at $\sqrt{S} = 13$ TeV

Same conclusion as in 5.02 TeV

Nice validation of the AZNLO Pythia8 tune, developed for m_W determination at 7 TeV —

2024/10/15

•

- An excellent probe of QCD and of the proton structure
 - Events Events 10¹ 10¹ ATLAS ATLAS 🗌 tī Data 🗌 tī Data √s = 13.6 TeV, 29 fb⁻¹ $\sqrt{s} = 13.6 \text{ TeV}, 29 \text{ fb}^{-1}$ $\square W \rightarrow h$ Single-top ΠW→hν Single-top 10¹⁰ 10¹⁰ Post-fit Pre-fit Z→ II $Z \rightarrow I$ Multi-jet W Uncertainty Multi-jet Uncertainty 10⁹ 10⁸ 10⁸ 10 10⁷ 107 10⁶ 10^{6} 10⁵ 10⁵ 10⁴ 10⁴ 1.005 1.05 Data / Pred. Data / Pred. 0.95 0.995 eu 1b eu 2b eu 1b eu 2b eν e⁺v μv μ⁺ν ev e⁺v μv μ⁺ν ee μμ ee μμ
- Fit from profile likelihood (PLH) method

2024/10/15

u/d

d

- Measured results for W^+, W^-, Z cross sections and their ratios
- generally in good agreement with SM predictions with different PDF sets.

1.25

11

2024/10/15

- $t\bar{t}/W$ cross section ratio given here for the first time at 13.6 TeV
- Lower than the theory predictions of most PDFs, mainly due to the measured $t\bar{t}$ cross section at 13.6TeV is lower as shown in <u>PLB 848(2024)138376</u>

- Dependence of cross sections on the center-of-mass energy
- Good agreement with theory prediction

Z + heavy flavor at $\sqrt{S} = 13$ TeV

- Test of perturbative QCD and heavy-flavor quarks inside proton
- Important background of Higgs boson measurements or search for new physics

• Measured observables

Table 1: List of observables used to perform differential cross-section measurements.

Observable	Notation pQCD and MC
$p_{\rm T}$ of the leading <i>b</i> -jet $p_{\rm T}$ of the <i>Z</i> boson	$\begin{bmatrix} p_{T,b}^0 \\ p_T(Z) \end{bmatrix}$ modelling
$\Delta \tilde{R} = \sqrt{(\Delta \phi)^2 + (\Delta y)^2}$ between the <i>Z</i> boson and leading <i>b</i> -jet, where $\Delta \phi$ (Δy) is the azimuthal angle (rapidity) difference	$\Delta \tilde{R}_{Zb}$ PDF model: 4FS vs 5FS
$p_{\rm T}$ of the leading <i>c</i> -jet $p_{\rm T}$ of the <i>Z</i> boson	$\begin{bmatrix} p_{T,c}^{0} \\ p_{T}(Z) \end{bmatrix}$
Feynman- <i>x</i> variable $x_F = 2 p_z(c) /\sqrt{s}$ [25] Cross-section ratio of $p_T(Z)$ in $ y(Z) < 1.2$ and $ y(Z) > 1.2$	$\begin{bmatrix} x_F(c) \\ R(p_T(Z)) \end{bmatrix}$ Intrinsic charm
Invariant mass of the two leading <i>b</i> -jets Azimuthal angle difference between the two leading <i>b</i> -jets	$\left[\begin{array}{c} m_{bb} \ \Delta \phi_{bb} \end{array} ight] \cdot g ightarrow b \overline{b} \ {\sf modelling}$
	Observable $p_{\rm T}$ of the leading b -jet $p_{\rm T}$ of the Z boson $\Delta \tilde{R} = \sqrt{(\Delta \phi)^2 + (\Delta y)^2}$ between the Z boson and leading b -jet,where $\Delta \phi (\Delta y)$ is the azimuthal angle (rapidity) difference $p_{\rm T}$ of the leading c -jet $p_{\rm T}$ of the Z bosonFeynman- x variable $x_F = 2 p_z(c) /\sqrt{s}$ [25]Cross-section ratio of $p_{\rm T}(Z)$ in $ y(Z) < 1.2$ and $ y(Z) > 1.2$ Invariant mass of the two leading b -jetsAzimuthal angle difference between the two leading b -jets

Z + heavy flavor at $\sqrt{S} = 13$ TeV

Measurement strategy

- Background estimation
 - Z+jets background: A likelihood fit on a flavor-sensitive observable ("flavor-fit") to decide the shape and normalization of Z+b-jets, Z+c-jets and Z+light jets, done separately in >=1 flavor-tagged jet and >=2 flavor-tagged jets
 - $t\bar{t}$ and MJ estimated vis data-driven method
 - Other non-Z+jets background estimated via MC simulations
- Bayesian unfolding
- Uncertainty estimation: for each systematic source, repeat the flavor fit, then unfold

Z + heavy flavor at $\sqrt{S} = 13$ TeV

5FS: massless b-quark **Inclusive cross-sections in the fiducial phase space** 4FS: b quark generated by $g \rightarrow bb$ 3FS: c quark generated by $g \rightarrow c\bar{c}$ ATLAS √s = 13 TeV, 140 fb⁻¹ ATLAS ATLAS √s = 13 TeV, 140 fb⁻¹ $Z(\rightarrow II) + \ge 1 \text{ c-jet}$ √s = 13 TeV, 140 fb⁻¹ $Z(\rightarrow II) + \ge 2 \text{ b-jets}$ $Z(\rightarrow II) + \ge 1 \text{ b-jet}$ -- 20.89 ± 0.07 ± 2.77 pb --- 10.49 ± 0.02 ± 0.59 pb --- 1.394 ± 0.006 ± 0.131 pb Data (stat.) Data (stat.+syst.) Data (stat.) Data (stat.) 以 MGaMC+Py8 FxFx 5FS (NLO) Sherpa 5FS (NLO) ▲ MGaMC+Py8 4FS (NLO) ▲ MGaMC+Py8 FxFx 5FS (NLO) ▲ MGaMC+Py8 FxFx 5FS (NLO) MGaMC+Py8 Zcc 3FS (NLO) Sherpa 5FS (NLO) NNPDF40 (pch) ▼ Sherpa 5FS (NLO) MGaMC+Py8 Zbb 4FS (NLO) □ NNPDF40 (LHCbZc + EMC) MGaMC+Pv8 Zbb 4FS (NLO) MGaMC+Py8 5FS (NLO) △ CT14NNLO ♦ BHPS1 (<x>, = 0.6%) ு BHPS2 (<x>் = 2.1%) 10 12 20 1.5 2 14 16 2.5 18

 $\sigma(Z + \ge 2 \text{ b-jets}) \text{ [pb]}$

10

15

20

25

- 5FS predict the inclusive cross-sections for both Z+>=1b-jet and Z+>=2b-jets well
- 4FS only works for Z+>=2 b-jets

 $\sigma(Z + \ge 1 \text{ b-jet}) \text{ [pb]}$

3FS underestimate the measurement by about 3σ , due to lack of resummation of $\ln(Q^2/m_c^2)$ in the collinear PDF evolution.

30

50

40 45 $\sigma(Z + \ge 1 \text{ c-jets})$ [pb]

Z + b-jet at $\sqrt{S} = 13$ TeV

Z + c-jet at $\sqrt{S} = 13$ TeV

Investigate the hypothesis of intrinsic charm

- Comparison with various IC models show no ٠ strong evidence for intrinsic charm component in proton.
- Can be used as new inputs to the future QCD ٠ global analysis.

No-IC

models

2024/10/15

p_T^{miss} plus jets cross sections at $\sqrt{S} = 13$ TeV

- Precise measurement of standard model (SM)
- search and constraint beyond the SM (BSM) physics
- Signal region: p_T^{miss} + jets $p_T^{miss} = p_T^{recoil}$
- Control regions: lepton/photon + jets
- $R_{miss} = \sigma(\text{Signal region}) / \sigma(\text{Control region})$, uncertainties cancels out in the ratio
 - Two different jet topologies, enhance the sensitivity to BSM physics
 - $\geq 1 \text{ jet } (p_T^{jet} > 120 \text{ GeV})$
 - VBF region ($|\Delta y_{jj}| > 1, m_{jj} > 200 \text{ GeV}$)

Three BSM-sensitive observables

Jet

- Transverse momentum of hadronic system P_T^{recoil}
- Invariant dijet mass m_{jj}
- Jet angular separation $\Delta \phi_{ii}$
- Unfolding: corrected for detector effects and fiducial phase space
- designed for reinterpretation, no need to repeat detector-simulations

 $\vec{p}_{\mathrm{T}}^{\mathrm{recoil}}$

2024/10/15

p_T^{miss} plus jets cross sections at $\sqrt{S} = 13$ TeV

Differential cross sections compared to state-of-art SM predictions

Good agreement except for the m_{jj} distribution.

p_T^{miss} plus jets cross sections at $\sqrt{S} = 13$ TeV

- Discrepancy in modelling and some systematic uncertainties cancels in the ratio R_{miss}
- Better agreement than cross-sections, especially in m_{ii}

21

miss plus jets cross sections at $\sqrt{S} = 13$ TeV

Implications for physics beyond the Standard Model

Limits from the particle-level R_{miss}^{-1} • measurements are competitive to that from detector-level ATLAS monojets search

Also similar sensitivity on 2HDM+a model to the p_T^{miss} -based direct search

800

Particle-level measurements provides as good sensitivity to BSM physics as detector-level searches, amenable to reinterpretation in terms of different models. 2024/10/15 22

Conclusions

- Measurement of Drell-Yan process provide important test on several aspects
 - Electroweak
 - W mass and width measurement by reanalysis of 7 TeV data
 - Consistent with the SM fit result
 - QCD
 - W and Z transverse momentum at 5.02 TeV and 13 TeV
 - Especially important for future W mass measurement
 - Proton structure
 - W, Z cross section at 13.6 TeV
 - Z+b/c jets at 13 TeV
 - Provide constraint on both light quark and heavy quark inside proton
 - BSM constraints
 - Missing transverse momentum + jets at 13 TeV
 - Prove the particle-level measurement show same sensitivity to BSM physics