

ATLAS measurements of Drell Yan processes

Mingzhe Xie

On behalf of ATLAS collaboration

2024.10.20

Drell-Yan process

• Proposed in 1970s, play an important role in both electroweak, PDF and QCD

- **Electroweak precision measurement**
	- **[W mass and width at 7TeV](https://arxiv.org/abs/2403.15085)**
- **QCD and Proton inner structure (PDF)**
	- **[W, Z cross sections and their ratio](https://www.sciencedirect.com/science/article/pii/S0370269324002831?via%3Dihub) [at 13.6 TeV](https://www.sciencedirect.com/science/article/pii/S0370269324002831?via%3Dihub)**
	- **[Z+b/c jets cross sections](https://arxiv.org/abs/2403.15093)**
	- **W, Z pT [distribution](https://arxiv.org/abs/2404.06204)**
- **New physics search**
	- **[Missing transverse momentum](https://link.springer.com/article/10.1007/JHEP08(2024)223) [+jets cross sections](https://link.springer.com/article/10.1007/JHEP08(2024)223)**

W boson mass and width at $\sqrt{S} = 7$ TeV

• **W boson mass**

• As a fundamental parameter of standard model (SM), crucial to both validation of standard model and probe for potential new physics.

$$
M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}G_\mu} \left(1 + \Omega r\right),
$$

 Δr represents the radiative corrections within SM and the extensions of it.

80300 80350 80400 80450 m_W (MeV)

EW fit

Latest measurement of W mass from CMS group

• Two most precise measurements:

- **CDF: differ from SM prediction around 7**
- **CMS: agree well with SM.**

• W decay width \varGamma^W

- Comparison between measured value and SM prediction probe for new particles
- Current world average 2085 \pm 42 MeV from LEP-2 and Tevatron, **NO** LHC measurements

W mass reanalysis using 7 TeV data

• **Previous result**

 $m_W = 80370 \pm 7$ (stat.) ± 11 (exp. syst.)

• χ^2 offset method

$$
\pm
$$
 14 (mod. syst.) MeV

 $= 80370 \pm 19$ MeV,

- **Major updates**
	- Profile likelihood $\mathcal{L}(\vec{n}|\mu,\vec{\theta}) = \prod \prod \text{Poisson}\left(n_{ji}|\nu_{ji}(\mu,\vec{\theta})\right) \cdot \text{Gauss}\left(\vec{\theta}\right)$, representing experimental

Simultaneous fit of mw and nuisance parameters and modelling uncertainties

• **Fitting strategy**

 $\boldsymbol{p_T^W}$ modelling $\,$ validated with the latest measurement

- Combined by BLUE method with the correlation estimated from fluctuated toys ρ ~50.4% → $w(p_T^l)$ ~86% (for CT18NNLO)
- Final result dominated by p_T^l fit

New W mass result at $\sqrt{S} = 7$ TeV

• **A dependence on the PDF choice is tested**

• **CT18 is chosen as the baseline**

 $m_W = 80366.5 \pm 9.8$ (stat.) ± 12.5 (syst.) MeV = 80366.5 ± 15.9 MeV,

• Central value decreased by 3 MeV, total uncertainty reduced by 3 MeV (16%)

W width measurement at $\sqrt{S} = 7$ TeV

Same strategy used as m_W **measurement**

- $\Gamma_W = 2202 \pm 32$ (stat.) ± 34 (syst.) MeV = 2202 ± 47 MeV, $w(m_T)$ ~87%, dominated by m_T fit
- First measurement at LHC, most precise experimental results at present

Simulaneously determination of m_W and Γ_W , yield $m_W = 80354.8 \pm 16.1$ MeV $\Gamma_W = 2198 \pm 49$ MeV,

 p_T^W and p_T^Z at $\sqrt{S}=5.02/13$ TeV

- **A sensitive test of QCD**
	- higher order corrections
	- non-perturbative effects such as the primordial k_T of the incoming partons
- $p_T^V \leq 30$ GeV are particularly important for the measurement of W mass
	- $\,$ can be used to tune QCD model which affects the p_T^l and m_T distributions

• **Strategy**

- \bullet $\,$ To reduce pile-up, low $< \mu >$ data was used, 255 pb^{-1} at 5.02 TeV, 338 pb^{-1} at 13 TeV
- Both electron and muon final states used
- p_T^W unfolded from hadronic recoil \vec{u}_T
- $\bm{\cdot} \quad p_T^Z$ measured through the dilepton system p_T^{ll}
- Hadronic recoil calibration
	- $\vec{u}_T = -\vec{p}_T^V$ is valid for both W and Z
	- Well-measured dilepton system can thus be used to calibrate the hadronic recoil response, and the unfolded p_T^{ll} distribution provides a cross-check of the p_T^Z spectrum measured from u_T

 p_T^W and p_T^Z at $\sqrt{S}=5.02$ TeV

Data vs various PDF predictions

- DYTURBO generally agrees well with data
- PDF predictions have only small difference

Data vs various MC predictions

- MC predictions tuned to 7 TeV data (Powheg+Pythia8 AZNLO, Pythia8 AZ) agrees well with data in low p_T
- Sherpa2.2.5 matches data best at high p_T
- Powheg+Herwig7 does not perform well

2024/10/15 8

 p_T^W and p_T^Z at $\sqrt{S}=13$ TeV

• Same conclusion as in 5.02 TeV

• Nice validation of the AZNLO Pythia8 tune, developed for m_W determination at 7 TeV.

- **An excellent probe of QCD and of the proton structure**
	- \bar{d}^{*} \bar{u} $\bar u/\bar d$ Events Events 10^{1} $10¹$ **ATLAS ATLAS** \bullet Data \Box tt \bullet Data \Box tt \sqrt{s} = 13.6 TeV, 29 fb¹ \sqrt{s} = 13.6 TeV, 29 fb¹ \Box W \rightarrow Iv Single-top \square W \rightarrow W Single-top 10^{10} 10^{10} Post-fit Pre-fit \Box $Z \rightarrow$ Π \Box VV \Box Z \rightarrow I \Box VV **W** Uncertainty Multi-jet Multi-jet **W** Uncertainty 10^9 10^9 10^8 10 $10⁷$ $10⁷$ 10^{6} 10^6 10^{5} 10^{5} $10⁴$ $10⁴$ 1.005 1.05 Data / Pred. Data / Pred. 0.95 0.995 $e^{\tau}v$ eu 1b eu 2b $e\overline{v}$ $e^{\mathrm{i}}v$ $\mu \overline{\nu}$ $e\mu$ 1b $e\mu$ 2b $e\overline{v}$ $\mu \overline{\nu}$ $\mu^+\nu$ ee $\mu^+\nu$ ee $\mu\mu$ μμ

 \overline{u}

 W^+_-d

• **Fit from profile likelihood (PLH) method**

2024/10/15 10

 $u \not\!\perp d$

Z

- Measured results for W^+ , W^- , Z cross sections and their ratios
- generally in good agreement with SM predictions with different PDF sets.

 $\frac{1}{1.25}$

- $t\bar{t}/W$ cross section ratio given here for the first time at 13.6 TeV
- Lower than the theory predictions of most PDFs, mainly due to the measured $t\bar{t}$ cross section at 13.6TeV is lower as shown in [PLB 848\(2024\)138376](https://www.sciencedirect.com/science/article/pii/S0370269323007104?via%3Dihub)

- **Dependence of cross sections on the center-of-mass energy**
- Good agreement with theory prediction

Z + heavy flavor at $\sqrt{S} = 13$ TeV

- **Test of perturbative QCD and heavy-flavor quarks inside proton**
- **Important background of Higgs boson measurements or search for new physics**

• **Measured observables**

Table 1: List of observables used to perform differential cross-section measurements.

Z + heavy flavor at $\sqrt{S} = 13$ TeV

Measurement strategy

- Background estimation
	- Z+jets background: A likelihood fit on a flavor-sensitive observable ("flavor-fit") to decide the shape and normalization of Z+b-jets, Z+c-jets and Z+light jets, done separately in >=1 flavor-tagged jet and >=2 flavor-tagged jets
	- $t\bar{t}$ and MJ estimated vis data-driven method
	- Other non-Z+jets background estimated via MC simulations
- Bayesian unfolding
- Uncertainty estimation: for each systematic source, repeat the flavor fit, then unfold

Z + heavy flavor at $\sqrt{S} = 13$ TeV

Inclusive cross-sections in the fiducial phase space

5FS: massless b-quark 4FS: b quark generated by $q \rightarrow bb$ 3FS: c quark generated by $q \to c\bar{c}$

- 5FS predict the inclusive cross-sections for both Z+>=1b-jet and Z+>=2b-jets well
- 4FS only works for Z+>=2 b-jets

3FS underestimate the measurement by about 3σ , due to lack of resummation of $\ln(Q^2/m_c^2)$ in the collinear PDF evolution.

$Z + b$ -jet at $\sqrt{S} = 13$ TeV

Z + c-jet at $\sqrt{S} = 13$ TeV

Investigate the hypothesis of intrinsic charm

- Comparison with various IC models show no strong evidence for intrinsic charm component in proton.
- Can be used as new inputs to the future QCD global analysis.

No-IC

models

p_T^{miss} plus jets cross sections at $\sqrt{S}=13$ TeV

- Precise measurement of standard model (SM)
- **search and constraint beyond the SM (BSM) physics**
- Signal region: p_T^{miss} + jets $\bm{p}_T^{miss}=\bm{p}_T^{recoil}$
- Control regions: lepton/photon + jets
- R_{miss} = σ (Signal region) / σ (Control region), uncertainties cancels out in the ratio
	- **Two different jet topologies, enhance the sensitivity to BSM physics**
	- ≥ 1 jet ($p_T^{jet} > 120$ GeV)
	- VBF region ($|\Delta y_{ij}| > 1$, $m_{ij} > 200$ GeV)

• **Three BSM-sensitive observables**

Jet

- Transverse momentum of hadronic system P_T^{recoil}
- Invariant dijet mass m_{ij}
- Jet angular separation $\Delta\phi_{ij}$
- Unfolding: corrected for detector effects and fiducial phase space
- **designed for reinterpretation, no need to repeat detector-simulations**

 $\vec{p}_{\rm T}^{\rm recoil}$

p_T^{miss} plus jets cross sections at $\sqrt{S}=13$ TeV

Differential cross sections compared to state-of-art SM predictions

Good agreement except for the m_{ij} distribution.

p_T^{miss} plus jets cross sections at $\sqrt{S}=13$ TeV

- Discrepancy in modelling and some systematic uncertainties cancels in the ratio R_{miss}
- Better agreement than cross-sections, especially in m_{ij}

$\boldsymbol{\lambda}$ miss plus jets cross sections at $\sqrt{S} = 13$ TeV

1200 m_{χ} [GeV] $\tan \beta$ Observed **ATLAS** Expected \sqrt{s} = 13 TeV, 140 fb⁻¹ 1000 **ATLAS** $10⁷$ Expected $±1\sigma$ Axial-vector mediator \sqrt{s} = 13 TeV, 140 fb⁻¹ Dirac DM Monojet $139fb^{-1}$ (Obs.) $2HDM+a$ $g_q = 0.25, g_y = 1.0$ Monojet 139 fb⁻¹ (Exp.) $m_H \equiv m_A \equiv m_{H^{\pm}} = 600 \,\text{GeV}$ All limits at 95% CL 800 All limits at 95% CL Observed Expected 600 Expected $±1\sigma$ 400 $10⁰$ 200 Γ/m_A > 20% 100 $\overline{200}$ 300 500 600 800 400 700 1000 1500 2000 500 m_a [GeV] • Limits from the particle-level R_{miss} [GeV]

• **Implications for physics beyond the Standard Model**

measurements are competitive to that from detector-level ATLAS monojets search

• Also similar sensitivity on 2HDM+a model to the $p_T^{miss}\!$ -based direct search

Particle-level measurements provides as good sensitivity to BSM physics as detector-level searches, amenable to reinterpretation in terms of different models. 2024/10/15 22

Conclusions

- **Measurement of Drell-Yan process provide important test on several aspects**
	- **Electroweak**
		- **W mass and width measurement by reanalysis of 7 TeV data**
		- **Consistent with the SM fit result**
	- **QCD**
		- **W and Z transverse momentum at 5.02 TeV and 13 TeV**
		- **Especially important for future W mass measurement**
	- **Proton structure**
		- **W, Z cross section at 13.6 TeV**
		- **Z+b/c jets at 13 TeV**
		- **Provide constraint on both light quark and heavy quark inside proton**
	- **BSM constraints**
		- **Missing transverse momentum + jets at 13 TeV**
		- **Prove the particle-level measurement show same sensitivity to BSM physics**