

Measurements of Higgs boson production and decay rates with the ATLAS experiment

Lena Herrmann on behalf of the ATLAS Collaboration

35th Rencontres de Blois

22.10.2024

Why?

- challenge the SM to get a fundamental understanding of the universe
- particle couplings to Higgs boson are central to the theory

- \rightarrow **Gauge Couplings** to vector bosons provide information of spontaneous symmetry-breaking
- \rightarrow Yukawa Couplings further probe the Higgs sector
- \rightarrow couplings to heavy particles like top quark sensitive to BSM

Higgs Production & Decay

 \rightarrow ambitious program measuring all accessible production and decay channels \rightarrow latest results show evidence for rare decays (Z γ , ..)

Key ingredients to challenge the SM: \rightarrow advanced analysis strategies \rightarrow more statistics (Run 2: 140 fb⁻¹, Run 3 targets \sim 300 fb⁻¹)

Measurement Strategies

- ightarrow Fiducial Cross-Sections
 - fiducial: *having trust* (in the detector)
 - select phase-space accessible to detector/ reliably reconstructable
 - theory and experiment comparable with minimal extrapolations

- \rightarrow Simplified Template Cross-Sections (STXS)
 - phase-space regions split according to production mode/ kinematics
 - reduction of theoretical uncertainties
 - regions promising for BSM (high p_T^H)
 - facilitation of combination

EFT Interpretation

 anomalous interactions may affect interaction vertices and are introduced in an EFT Lagrangian via higher dimensional operators O_i

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{d} \sum_{i} \frac{c_i^d}{\Lambda^{(d-4)}} \mathcal{O}_i^{(d)}, \text{for } d > 4$$

- Wilson-coefficients $c_i^{(d)}$ specify strength of anomalous interaction
- Λ : scale of new physics
- only dimension 6 operators considered (dimension 5 and 7 violate lepton and baryon number conservation, higher dimensions suppressed)
- derive constraints on Wilson coefficients by comparing measured cross-section to the prediction of SMEFT
- differential cross-section depends on linear (suppressed by Λ^{-2}) and quadratic term (suppressed by Λ^{-4})(interference between SM and EFT amplitude/ pure EFT contribution)

$$\sigma \propto |\mathcal{M}_{\mathsf{EFT}}|^2 = |\mathcal{M}_{\mathsf{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{M}_i|^2$$

Tau Coupling

$H \rightarrow \tau \tau$: **STXS Results** (Run 2) (arXiv:2407.16320)

- di-tau channel promising branching ratio of 6.3%
- dominant background: $Z \rightarrow \tau \tau$
- 6 bins in ggF, 1 V(had)H,
 8 VBF & 3 ttH
- improved MVA strategies in VBF and t*t*H

relative precision ($\mu = 1$): **35%** - **300%**

Higgs Production & Decay

Lena Herrmann, Universität Bonn

7

$V(\mathit{lep})H ightarrow au au ag{Run 2}$ (arxiv:2312.02394)

- four channels differentiated by leptonic decay of W or Z, and $\tau_{\text{lep}}\tau_{\text{had}}$ or $\tau_{\text{had}}\tau_{\text{had}}$ channel of Higgs decay
- μ measured by fit to NN score distribution, 6 classifiers trained (three for WH(τ_{lep}τ_{had}))

$$\label{eq:main_state} \begin{split} \mu &= 1.28 \pm 0.3 (\textit{stat}) \pm 0.2 (\textit{syst}), \\ \text{evidence} \text{ of the process with a significance of } 4.2\sigma \end{split}$$

Top Coupling

$t\bar{t}H(b\bar{b})$ (Run 2) (arxiv:2407.109004)

- heavy top interesting for BSM searches
- ttH channel enables top-Yukawa measurement
- high branching ratio of bb but large background from tt + jets
- advanced b-jet identification (DL1r: multiclass DNN differentiating b,c,l)
- multiclass NN differentiates signal from 5 background categories
- single lepton channel limited by systematics, dilepton by statistics

evidence with 4.6σ

 STXS cross-section measurement in 6 p_T^H bins, compatibility with SM prediction: p-value of 89%

Lena Herrmann, Universität Bonn

Charm Coupling

 $H(
ightarrow\gamma\gamma)+c~({
m Run}~2)$ (arxiv:2407.15550)

- charm coupling challenging due to low branching ratio and large hadronic background
- measure inclusive H+c: g+c \rightarrow H + c (y_c sensitive) contributes with $\sim 1\%$
- non-resonant $pp \rightarrow \gamma + n$ parton background: data-driven estimation, interpolate contribution from sideband to SR using Gaussian process regression (GPR)

12

$H(ightarrow\gamma\gamma)+c~({ m Run}~2)$ (arxiv:2407.15550)

- charm coupling challenging due to low branching ratio and large hadronic background
- measure inclusive H+c: $g+c \rightarrow H+c$ (y_c sensitive) contributes with $\sim 1\%$
- non-resonant $pp \rightarrow \gamma + n$ parton background: data-driven estimation, interpolate contribution from sideband to SR using Gaussian process regression (GPR)

- ightarrow binned likelihood fit to $m_{\gamma\gamma}$
- \rightarrow dominant uncertainties from GPR (statistical) & theory
- \rightarrow 1.7 σ observed significance of inclusive H+c process

• • • • • • • •

4) و

$V(ightarrow {\it leptons}) H(ightarrow c ar c / b ar b) \ ({ m Run} \ 2)$ (atlas-conf-2024-010)

 \rightarrow study c-Yukawa coupling in Higgs decay

- V(\rightarrow leptons)H provides clean signature suppressing multi-jet background
- reliable jet flavor tagging crucial

 → dedicated flavor tagging regions based
 on the DL1r output
- 0-/1-/2-lepton channels differentiated
- methodology validated in VZ($ightarrow car{c}/bar{b})$
- likelihood-fit to BDT-observable
- dominant backgrounds: $t\overline{t}$ and V+jets
- $VH(\rightarrow c\bar{c})$ similarly affected by statistical and systematic uncertainties

 $H
ightarrow c ar{c}$ observed upper limit at 11.3 imes SM @95% CL

Lena Herrmann, Universität Bonn

うく

Gauge Coupling

Lena Herrmann, Universität Bonn

Relative Sign of Higgs Boson Couplings to W and Z in VBF WH Production (Run 2) $_{(arxiv:2402.00426)}$

- channel: $WH \rightarrow l\nu bb$
- same-sign (SM-like) vs. opposite sign of $\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z}$ corresponds to destructive vs. constructive interference of VBF WH production with H coupling to either W or Z
- combined Higgs measurements yield $|\lambda_{WZ}|$ consistent with 1 (κ_W expected to be positive due to interference with t)

opposite sign coupling excluded with significance $> 5\sigma$

Lena Herrmann, Universität Bonn

Higgs Production & Decay

 $H \rightarrow Z (\rightarrow II) \gamma$ (Run 2)

(Phys. Rev. Lett. 132, 021803)

- rare decay, ATLAS + CMS analysis
- decay via loops \rightarrow sensitive to BSM scenarios
- \bullet dominant background: Drell-Yan in association with γ
- ATLAS/CMS: 6/8 categories (i.e. VBF via BDTs, exploit kinematic properties..)

Evidence with 3.4σ significance from ATLAS + CMS combination

うく

Interpretation : arxiv:2402.05742

 \rightarrow STXS measurements of various Higgs production modes and decays

Decay Channles

Compatibility with SM prediction: p-value 99.4%

Image: A matrix and a matrix

Interpretation : arxiv:2402.05742

- SMEFT interpretation based on combined STXS results
- constrain d=6 wilson coefficients that impact Higgs coupling to SM particles

- data not sufficient to simultaneously constrain all 50 coefficients (see Appendix)
- choose **rotated basis** by principal component analysis

Conclusion

- \rightarrow ATLAS is progressing well in characterizing Higgs production & decay rates
- \rightarrow increasing level of detail: STSX cross-sections
- \rightarrow increasingly model-independent interpretation (SMEFT)
- \rightarrow overall good agreement with SM at present level of precision

- \rightarrow expected increase in statistics by a factor two in Run 3 and an order of magnitude in the HL-LHC era
- → highly complex analysis strategies are continuously refined to profit from the full physics potential

arxiv:1811.08856, $H \rightarrow \tau_{\text{lep}} \tau_{\text{lep}}$

Additional Material

Lena Herrmann, Universität Bonn

Higgs Production & Decay

æ

・ロト ・御 ト ・ ヨト ・ ヨト

VBF $H \rightarrow WW^* \rightarrow e \nu \mu \nu$ (arxiv:2304.03053)

 fiducial cross-section measurement (integrated & differential)

 $\sigma_{\rm fid} = 1.68 \pm 0.4 {\rm fb}$

- statistical uncertainties dominate differential measurement
- constraints on anomalous interactions via interpreation in EFT formalism
- set limits on dimension six CP-even and CP-odd operators
- stringent constraints obtained when quadratic terms included

Lena Herrmann, Universität Bonn Higgs Production & Decay

ggF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ (Run 2)

- channel profits from large branching fraction (22%)
- mixed decay to reduce Drell-Yann background
- single- and double-differential cross-sections measured in **bins of transverse mass** $m_T = \sqrt{(E_T^{II} + E_T^{miss})^2 - |\vec{p_T}^{II} + \vec{p_T}^{miss}|}$
- fiducial measurement: jet-criteria (sensitive to production kinematics) & leptonic kinematic observables
- leading uncertainties: jet/muon reconstruction, theoretical modelling of WW/ V γ

measurement consistent with SM

Wilson coefficient	Operator	Wilson coefficient	Operator
c_H	$(H^{\dagger}H)^{3}$	$c_{Qq}^{(1,1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$
$c_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$	$c_{Qq}^{(1.8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$
c_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$	$c_{Qq}^{(3,1)}$	$(\bar{Q}\sigma^{i}\gamma_{\mu}Q)(\bar{q}\sigma^{i}\gamma^{\mu}q)$
c_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$c_{Oq}^{(3.8)}$	$(\bar{Q}\sigma^{i}T^{a}\gamma_{\mu}Q)(\bar{q}\sigma^{i}T^{a}\gamma^{\mu}q)$
c_{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	$c_{qq}^{(3,1)}$	$(\bar{q}\sigma^i\gamma_\mu q)(\bar{q}\sigma^i\gamma^\mu q)$
c_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	$c_{tu}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$
c_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	$c_{tu}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{u}T^a\gamma^\mu u)$
c_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	$c_{td}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$
c_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$c_{td}^{(8)}$	$(\bar{t}T^a \gamma_\mu t)(\bar{d}T^a \gamma^\mu d)$
$c_{Hl,11}^{_{(1)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{1}\gamma^{\mu}l_{1})$	c ⁽¹⁾	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$
$c_{Hl,22}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{2}\gamma^{\mu}l_{2})$	c ⁽⁸⁾	$(\bar{O}T^a\gamma_{}O)(\bar{u}T^a\gamma^{\mu}u)$
$c_{Hl,33}^{_{(1)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{3}\gamma^{\mu}l_{3})$	C(1)	$(\bar{O}\gamma, O)(\bar{d}\gamma^{\mu}d)$
$c_{Hl,11}^{_{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{1}\tau^{I}\gamma^{\mu}l_{1})$	C ⁽⁸⁾	$(\bar{O}T^a\gamma, O)(\bar{d}T^a\gamma^{\mu}d)$
$c^{_{(3)}}_{Hl,22}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$	-Qd	$(\bar{a}_{\mu}, \bar{a}_{\mu})(\bar{a}_{\nu}, \bar{a}_{\mu})(\bar{a}_{\nu})(\bar{a}_{\nu})(\bar{a}_{\nu})$
$c^{_{(3)}}_{Hl,33}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{3}\tau^{I}\gamma^{\mu}l_{3})$	C _{tq}	$(\bar{q}T^a \sim q)(\bar{t}T^a \sim^{\mu} t)$
$c_{He,11}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{1}\gamma^{\mu}e_{1})$	0 _{tq}	(q. 1µq)(c. 1 c)
$c_{He,22}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{2}\gamma^{\mu}e_{2})$	$c_{eH,22}$	$(H^{\dagger}H)(\bar{l}_2e_2H)$
$c_{He,33}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{3}\gamma^{\mu}e_{3})$	$c_{eH,33}$	$(H^{\dagger}H)(\overline{l}_{3}e_{3}H)$
$c_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	c_{uH}	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\tilde{H})$
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	c_{tH}	$(H^{\dagger}H)(\bar{Q}\tilde{H}t)$
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_{bH}	$(H^{\dagger}H)(\bar{Q}Hb)$
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	CtrC	$(\bar{Q}\sigma^{\mu\nu}T^{A}t)\tilde{H}G^{A}_{\mu\nu}$
$c_{HQ}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	c_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^{I}\tilde{H}W^{I}_{\mu\nu}$
$c_{HQ}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q)$	C _{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\tilde{H}B_{\mu\nu}$
c_{Ht}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$		τ
c_{Hb}	$(H'i D_{\mu}H)(b\gamma^{\mu}b)$	$c_{ll,1221}$	$(l_1 \gamma_{\mu} l_2)(l_2 \gamma^{\mu} l_1)$

Considered operators and Wilson coefficient: arxiv:2402.05742

Lena Herrmann, Universität Bonn

< ∃ >

• • • • • • • • • • •

ヨー つく