Blois 2024: 35th Rencontres de Blois on "Particle Physics and Cosmology" October 20 - 25, 2024, Château de Blois-France

Higgs differential cross section and **STXS** measurements at CMS

Tahir Javaid (Beihang University, Beijing) On behalf of the **CMS collaboration**

Overview

*Higgs boson discovered in 2012 at CERN

- *Its properties have been measured with evolving precision since the discovery
 - Couplings, cross-section and etc.

*Several decay modes studied so far.

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

https://doi.org/10.1038/s41586-022-04892-x

Recent results from CMS on the topic

Dec	ay Channel	CMS data	Results	URL(s)			
	$H o \gamma \gamma$	Early Run3 (2022)	Inclusive, diffferential (1D)	<u>CMS-PAS-HIG-23-014</u>			
Bosonic	$H \rightarrow ZZ$	Early Run3 (2022)	Inclusive, diffferential (1D)	CMS-PAS-HIG-24-013			
	$H \rightarrow WW$	Full Run2	STXS	Eur. Phys. J. C 83 (2023) 667			
Fermionic	H ightarrow bb	Full Run2	STXS	<u>CMS-PAS-HIG-21-020</u> <u>CMS-PAS-HIG-19-011</u> <u>10.1007/JHEP01(2024)173</u> <u>10.1103/PhysRevD.109.092011</u> <u>10.1140/epjc/s10052-024-13021-z</u>			
	H o au au	Full Run2	Inclusive, differential (1D), STXS	<u>10.1140/epjc/s10052-023-11452-8</u> 10.1103/PhysRevLett.128.081805 10.1016/j.physletb.2024.138964			
Combination	$H \rightarrow \gamma \gamma , H \rightarrow ZZ ,$ $H \rightarrow WW , H \rightarrow \tau \tau ,$ $H \rightarrow \tau \tau (boosted)$	Full Run2	Differential, Interpretations	<u>CMS-PAS-HIG-23-013</u>			

measurement (early Run3 CMS data)

*Overall, similar strategy in Run 2 and Run3

- Requirements on p_T^{γ} , η_{SC} , photon ID, and shower shape and isolation observables to match the HLT requirements
- Suppression of non-prompt photons with BDT (correction for disagreement in input variables for photon ID BDT applied)
 - single normalising flow (2403.18582) conditioned on kinematics (new approach in Run3)
- In contrast to $H \rightarrow ZZ \rightarrow 4\ell$, lower S/B ratio
- However, excellent data-driven background estimation under the peak

*Categorisation based on mass resolution (best, medium, worst)

$$\frac{\sigma_m}{m} = \frac{1}{2} \sqrt{\left(\frac{\sigma_{E_1}}{E_1}\right)^2 + \left(\frac{\sigma_{E_2}}{E_2}\right)^2}$$

*Inclusive and differential measurement

Inclusive Cross Section

* Apply fiducial requirement on geometric mean:

- "OutsideAcceptance" events fixed to SM and treated as signal
- Improved perturbative convergence in phase space (2106.08329)

$$\sigma_{\text{fid}} = 78 \pm 11 \text{ (stat.)}_{-5}^{+6} \text{ (syst.) fb} = 78^{+13}_{-12} \text{ fb}$$

*Systematics dominated by photon scale/resolution

Systematic uncertainty	Magnitude
Photon energy scale and resolution group	+5.8%/-4.9%
Category migration from energy resolution	+3.5%/-3.9%
Integrated luminosity	$\pm 1.4\%$
Photon preselection efficiency	$\pm 1.4\%$
Non-linearity	+0.8%/-1.6%
Photon identification efficiency	$\pm 1.0\%$
Pileup reweighting	$\pm 0.8\%$

 $p_T^{\gamma_1} p_T^{\gamma_2}$

 $m_{\gamma\gamma}$

$\rightarrow \gamma \gamma$: Differential Cross Section

*3 variables studied: p_T^H , $|y^H|$ and N_{jets}

- In agreement with SM
- Systematics dominated by photon scale/resolution

$H \rightarrow ZZ \rightarrow 4\ell$ ($\ell = e, \mu$) measurement (early Run3 CMS data)

*Well-suited for measurement with a clean signal

*Overall, similar strategy in Run 2 and Run 3

- Requirements on lepton kinematics (p_T , η , ID), and isolation to match the HLT requirements
 - Dedicated BDT for electron identification
- Reducible (data-driven), Irreducible (simulation)
- Unbinned maximum-likelihood fit
- *Excellent validation of muon and electron performance of CMS
- *Most relevant systematic: Electron efficiency

CMS-PAS-HIG-24-013

$H \rightarrow ZZ \rightarrow 4\ell$ ($\ell = e, \mu$): Inclusive Cross Section

*Well-suited for measurement with a clean signal

*Overall, similar strategy in Run 2 and Run 3

- Requirements on lepton kinematics (p_T , η , ID), and isolation to match the HLT requirements
 - Dedicated BDT for electron identification
- Reducible (data-driven), Irreducible (simulation)
- Unbinned maximum-likelihood fit
- *Excellent validation of muon and electron performance of CMS
- *Most relevant systematic: Electron efficiency

*Measured inclusive cross section

 $\sigma_{\text{fid}} = 2.94^{+0.53}_{-0.49} \text{ (stat.)}^{+0.29}_{-0.22} \text{ (syst.) fb}$

$H \rightarrow ZZ \rightarrow 4\ell$ ($\ell = e, \mu$): Inclusive Cross Section

*Well-suited for measurement with a clean signal

*Overall, similar strategy in Run 2 and Run 3

- Requirements on lepton kinematics (p_T , η , ID), and isolation to match the HLT requirements
 - Dedicated BDT for electron identification
- Reducible (data-driven), Irreducible (simulation)
- Unbinned maximum-likelihood fit
- *Excellent validation of muon and electron performance of CMS
- *Most relevant systematic: Electron efficiency

*Measured inclusive cross section

$$\sigma_{\rm fid} = 2.94^{+0.53}_{-0.49} \text{ (stat.)}^{+0.29}_{-0.22} \text{ (syst.) fb}$$

*Measurements per lepton category consistent with each other

	-
	_
-	_
	-
	_
	-
	_
111	_
 111.	_
<i>'///</i>	_
 <u> ////</u>	-
 <u> ///.</u>	-
<u> ///.</u>	
 <u> </u>	
 	-
<u> </u>	
<i></i>	
<i>''</i> ///.	

$H \rightarrow ZZ \rightarrow 4\ell$ ($\ell = e, \mu$): Differential Cross Section

*Two variables studied: p_T^H , $|y^H|$ (coarse binning w.r.t. Run2)

- In agreement with SM
- Systematics dominated by Electron efficiency

*Full Run3(+Run2) dataset \rightarrow more granular binning expected

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

Higss production in *bb* final state

$*H \rightarrow bb$

- Signal Strengths, STXS

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

CMS-PAS-HIG-21-020 **CMS-PAS-HIG-19-011** 10.1007/JHEP01(2024)173 10.1103/PhysRevD.109.092011 <u>10.1140/epjc/s10052-024-13021-z</u>

$V(W/Z \rightarrow leptons) H \rightarrow bb$

*3 channels are considered for V:

- 0-lepton $(Z \rightarrow \nu \nu)$
- 1-lepton $(W \rightarrow \ell \nu)$
- 2-lepton $(Z \rightarrow \ell \ell)$; kinematic fit applied

* Fit to SR and orthogonal control regions (CRs):

- tt
- V+HF(heavy flavor)
- V+LF (light flavors)
- * Multi-category DNN in V+HF CR
- ***DNN** for signal classification and extraction
 - 8 VH categories (pT and jet multiplicity; 5 ZH & 3 WH)

*Sim. Modeling, b-tagging, JER being leading systematic sources

10.1103/PhysRevD.109.092011

(Boosted VBF/ggH) $H \rightarrow bb$

* Higgs at large pT (>450 GeV considered)

To probe BSM effects in scalar sector, test higher-order ulletEW radiative corrections in H production

*Updated multivariate <u>Deep Double B-Tagger</u> (DDB)

Signal significance increased by **twice**

*Generalized energy correlation functions for 2-prong (W/Z/H) tagging [JHEP 1612 (2016) 53] (to reduce *tt* bkg)

- Mass-decorrelated version; using the <u>Designed</u> \bullet Decorrelated Tagger method [JHEP 1605 (2016) 156]
- * Jet substructure and novel b-tagging (DDB fail region) to reject QCD background

*ML fit to the observed m_{SD} distributions for ggH and VBF

*W and Z boson resonances used to constraint syst. unc.

[CMS-PAS-HIG-21-020]

Observed differential Signal strengths:

- In p_T bins for ggF
- Inv. mass of forward jets for VBF

$t\bar{t}H/tH$, with $H \rightarrow bb$: Analysis Strategy

*3 channels are considered:

- Fully Hadronic (FH): 0-leptons (2 $xW \rightarrow q\bar{q}$) ullet
- Semi leptonic (SL): 1-lepton (1 $xW \rightarrow \ell \nu$)
- Dileptonic (DL): 2-leptons (2 x $W \rightarrow \ell \nu$) \bullet
- * categorization done with *jet* and b-tag multiplicity (inclusive, STXS).
- ***ANNs** trained for sig./bkg. separation, further categorization, and building **discriminants**
- *Improvements w.r.t. (CMS-PAS-HIG-18-030):
 - dominant QCD bkg. estimation (FH); data-driven
 - (Refined) neural network classifiers
 - DeepJet b tagging algorithm

$t\bar{t}H/tH$, with $H \rightarrow bb$: Results on Signal	Strengt	h Modifier
$\star t\bar{t}H$:		CMS Preliminary
 inclusive 	FH	μ μ 0.
- $\mu_{t\bar{t}H} = 0.33 \pm 0.26$	SL DL	
significance: obs.(exp.) 1.3σ (4.1 σ)	2016 2017	H■H 0.4 H■H 0.4
- Background normalization ($t\bar{t}B$ $t\bar{t}C$)	2018	H ∎H 0.
(backup)	Combined	0 0
• exclusive in p_T bins		CMS Prelimina
$\star tH$ (inclusive):	2016	±1 SD
 Expected and observed 95% CL upper limits 	2017	
• Simultaneous with $t\bar{t}H$ (backup)	2018 DL	
	SL	
	Combined	
		J 20 40

Higss production in $\tau\tau$ final state

 $*H \to \tau \tau$

- Signal Strengths, STXS, inclusive and differential (resolved and boosted)

Higgs differential cross section and STXS measurements at CMS

10.1140/epjc/s10052-023-11452-8 10.1103/PhysRevLett.128.081805 CMS-PAS-HIG-21-017

*Categories of Higgs Production:

- ggH: $(ggF + gg \rightarrow Z(qq)H)$
- qqH : $(VBF + qq \rightarrow V(qq)H)$
- VH : (W/Z)H

*4 channels considered:

• $\tau_h \tau_h, \mu \tau_h, e \tau_h, e \mu$

*Two analyses:

- Cut-based (S/B for event categorization)

*Majority of background estimated from data

- Genuine $\tau\tau$ events: estimated using <u>Tau Embedding</u>
- Jet misidentified as τ_h : Fake factor (F_F) Method

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

$\tau\tau$: differential (resolved)

*Measured in fiducial region defined to match the offline selection for each decay channel

 "OutsideAcceptance" events fixed to SM and treated as background

*Reported Differential measurements

- Observables (resolved) : p_T^H , N_{jets} and p_T^{j1}
- Observables (boosted): p_T^H , $p_T^{J_1}$
 - Final observable is NN output
- In agreement with SM

10.1140/epjc/s10052-023-11452-8 10.1103/PhysRevLett.128.081805 10.1016/j.physletb.2024.138964

$\rightarrow \tau \tau$: differential (boosted)

- *Measured in fiducial region defined to match the offline selection for each decay channel
 - "OutsideAcceptance" events fixed to SM and treated as background
- *Reported differential measurements
 - Observables (resolved) : p_T^H , N_{jets} and $p_T^{J^1}$
 - Observables (boosted): p_T^H , $p_T^{J_1}$
 - Final observable is NN output
 - In agreement with SM lacksquare

Combined measurements in $H \rightarrow X$ decays

* Combination of differential spectra in the analyses:

- $H \to \gamma \gamma (JHEP07(2023) 091), H \to ZZ (JHEP08(2023) 040), H \to WW (JHEP03(2021) 003),$ $H \rightarrow \tau \tau$ (Phys. Rev. Lett. 128, 081805), $H \rightarrow \tau \tau$ (boosted) arXiv:2403.20201
- *Differential XS
 - Fit Strategy:
 - Measurements in input analyses performed in different fiducial phase spaces
 - *μ* is used across the *channels* (inclusive phase space)
 - Signal models with differrent bin boundaries combined with a procedure
 - Systematics:
 - Lumi, efficiencies, energy scale & resolution *correlated* among channels except:
 - τ energy scale and lepton efficiencies in $H \to \tau \tau$, $H \to \tau \tau$ (boosted), $H \to ZZ$

*Interpretation of differential distribution (p_T^H) observable

• SMEFT: SM with series of higher dimensional operators which are invariant under SU(3) x SU(2) x U(1) symmetry

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0}^{2499} \frac{c_j^{(6)}}{\Lambda^2}$$

Combined measurements in $H \rightarrow X$ decays: Differential XS

*Reported Differential measurements

• Observables: p_T^H , N_{jets} , $|y^H|$, p_T^{j1} , m_{jj} , $|\Delta \eta_{jj}|$ and τ_C^j

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

Combined measurements in $H \rightarrow X$ decays: Differential XS

*Reported Differential measurements

• Observables: p_T^H , N_{jets} , $|y^H|$, p_T^{j1} , m_{ji} , $|\Delta \eta_{ji}|$ and τ_C^j (see backup slides for other distributions)

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

<u>CMS-PAS-HIG-23-013</u>

Combined measurements in $H \rightarrow X$ decays: Interpretation

*Observable being p_T^H (see slide 21)

*Fit pairs of CP-even, CP-odd WCs while setting all other WC = 0 (SM)

2D scans of Wilson Coefficients

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

CMS-PAS-HIG-23-013

Class	Operator	Wilson coefficient	Examp
	$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c_{HG}	g A
	$H^{\dagger}H ilde{G}^{a}_{\mu u}G^{a\mu u}$	${ ilde {\cal C}}_{HG}$	g
	$H^{\dagger}HB_{\mu u}B^{\mu u}$	c_{HB}	$q \xrightarrow{Z}$
с ⁽⁴⁾ х 2 <i>µ</i> 2	$H^{\dagger}H ilde{B}_{\mu u}B^{\mu u}$	${ ilde c}_{HB}$	$q \xrightarrow{Z \leq} $
$\mathcal{L}_6 = \Lambda \Pi$	$H^{\dagger}HW^{i}_{\mu u}W^{i\mu u}$	c_{HW}	$q \xrightarrow{W}$
	$H^\dagger H ilde W^i_{\mu u} W^{i\mu u}$	$ ilde{c}_{HW}$	$q \xrightarrow{W \leq}$
	$H^{\dagger}\sigma^{i}HW^{i}_{\mu u}B^{i\mu u}$	c_{HWB}	$q \xrightarrow{\gamma \leq} \\ \downarrow \\ $
	$H^{\dagger}\sigma^{i}H ilde{W}^{i}_{\mu u}B^{i\mu u}$	$ ilde{c}_{HWB}$	$q \xrightarrow{Z \leq}$

Combined measurements in $H \rightarrow X$ decays: Interpretation

*Constraints on linear combination of Wilson Coeficients:

Define linear combinations of WCs to simultaneously constrain 10 ulletdirections in the parameter space

	<u>CMS</u>	Pre	limi	nar	V																				
EV0		-0.09					0.80					-	-0.30									0.26	-0.44		0.
EV1		0.14					0.26						0.94									0.08	-0.15		0.
EV2		-0.97				0.04	-0.01	-0.03			-0.01	0.04	0.16		0.04	-0.06	0.03					-0.07	0.02		
EV3		0.10				0.09	0.04			0.01	-0.01	0.03	0.01	0.04	-0.60	-0.03	-0.08				-0.05	-0.14	-0.01	0.10	
EV4		0.07				-0.41	0.12			-0.01	-0.18	0.41			0.04	-0.52	0.37					-0.10	0.16	0.40	-0
EV5		-0.12				-0.17	-0.07	0.01		0.01	0.04	-0.14		0.10	-0.71	0.18	0.28				-0.09	0.04	-0.10	0.24	
EV6						-0.14	-0.08	0.01		-0.06	0.05	-0.15		-0.87	0.05	0.19	0.18	-0.02	-0.01		-0.14	0.17	-0.04	0.17	
EV7		-0.02				-0.20	-0.18	-0.02		-0.28	0.07	-0.10	0.02	0.33	0.07	0.11	0.05				0.10	0.76	0.12	0.14	
EV8		0.03				-0.18	-0.03	0.05		0.39	0.08	-0.27		0.31	0.32	0.36	0.32		0.04		-0.12	-0.25	-0.18 [.]	0.23	0.
EV9		-0.01	0.02-	0.02		0.03	-0.05	-0.02		0.80	-0.01	0.06		-0.12	-0.11	-0.08	-0.03	0.02	-0.03		0.45	0.30	0.09	0.03	-0
	Re(c _{bB}) Im(c _{bH})	Re(c _{bH})	lm(c _{bW})	Re(c _{bw})	lm(c _{eH})	Re(c _{eH})	CHB	CHbox	CHb	CHd	СНD	CHe	CHG	C ⁽¹⁾ CHq	$c_{Hq}^{(3)}$	c _{HI} ⁽¹⁾	c _{HI} ⁽³⁾	c ⁽¹⁾ CHQ	с ⁽³⁾ СНО	c _{Ht}	CHu	CHW	CHWB	$c_{II}^{(i)}$	

Absolute value signifies importance of WC in linear combination

Summary

*Presented the recent Higgs cross sections measured in bosonic and fermionic final states

- Run Run3/2 CMS data
- Several fronts explored:
 - STXS, differential (compared with theory predictions) results
 - Differential Combination from several channels and the interpretation

effects (if any) in this regime

*Full Run 3 (+Run2) data would provide us the opportunity to explore more fine granularity to see the BSM

Inank

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

BACKUP SLIDES

measurement (early Run3 CMS data)

*Overall, similar strategy in Run 2 and Run3

- Requirements on p_T^γ , η_{SC} , photon ID, and shower shape and isolation observables to match the HLT requirements
- Suppression of non-prompt photons with BDT
- In contrast to $H \rightarrow ZZ \rightarrow 4\ell$, lower S/B ratio
- However, excellent data-driven background estimation under the \bullet peak

*Categorisation based on mass resolution

$$\frac{\sigma_m}{m} = \frac{1}{2} \sqrt{\left(\frac{\sigma_{E_1}}{E_1}\right)^2 + \left(\frac{\sigma_{E_2}}{E_2}\right)^2}$$

*Inclusive and differential measurement

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

$H \rightarrow \gamma \gamma$: Corrections to Simulation

Higgs differential cross section and STXS measurements at CMS

Boosted VBF/ggH) $H \rightarrow bb$: Analysis Strategy

* Higgs at large pT (>450 GeV considered)

- To probe BSM effects in scalar sector, test higher-order \bullet EW radiative corrections in H production
- *Generalized energy correlation functions for 2-prong (W/Z/ H) tagging [JHEP 1612 (2016) 53]
 - Mass-decorrelated version; using the <u>Designed</u> Decorrelated Tagger method [JHEP 1605 (2016) 156]
- *Updated multivariate <u>Deep Double B-Tagger</u> (DDB)
 - Signal significance increased by twice \bullet
- * Jet substructure and novel b-tagging (DDB fail region) to reject QCD
- *ML fit to the observed m_{SD} distributions for ggH and VBF

*W and Z boson resonances used to constraint syst. unc.

(Boosted VBF/ggH) $H \rightarrow bb$: Results

*Observed inclusive Signal Strengths:

- VBF process: $5.0^{+2.1}_{-1.8}$ [obs(exp.) $\rightarrow 3.0\sigma (0.9\sigma)$]
- ggF process: $2.1^{+1.9}_{-1.7}$ [obs(exp.) $\rightarrow 1.2\sigma$ (0.9 σ)]

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

*Observed differential Signal strengths:

- In p_T bins for ggF
- Inv. mass of forward jets for VBF

$\tau\tau$: Results (differential)

- *Measured in fiducial region defined to match the offline selection for each decay channel
 - "OutsideAcceptance" events fixed to SM and treated as background
- *Reported Differential measurements
 - Observables (resolved) : p_T^H , N_{jets} and p_T^{j1}
 - Observables (boosted): p_T^H , $p_T^{J_1}$
 - Final observable is NN output
 - In agreement with SM \bullet

10.1140/epjc/s10052-023-11452-8 10.1103/PhysRevLett.128.081805

Vector Boson Fusion (VBF) process: second most dominant Higgs production @LHC

cross section ~ 3.78 pb (a) $\sqrt{s} = 13$ TeV with N²LO QCD & NLO EWK accuracy.

- \rightarrow Br(H \rightarrow bb) : largest, ~ 58%
- \rightarrow VBFHbb process at tree level probes C_V (HVV) coupling at the production and y_{h} (Hbb) coupling at the decay.

Experimental challenges

- \rightarrow Overwhelming QCD multijet background
- \rightarrow Large resonant Z \rightarrow bb background (overlapping with the signal in the higher tail of the Z peak)
- \rightarrow Triggering VBFHbb events with high efficiency at reasonable rate

Signatures of VBF process:

- \rightarrow Two forward-backward jets from the outgoing scattered partons
- \rightarrow Mostly with moderate $p_T =>$ positioned at the higher $|\eta|$ region, reasonably large rapidity gap ($\Delta \eta_{ii}$)
- \rightarrow High dijet invariant mass (m_{ii})
- \rightarrow jet pair termed as **VBF jets**

Strategy (Resolved analysis dealing with AK4 jets : 2 b-jets from Higgs decay + 2 VBF jets) \rightarrow Dedicated HLT Triggers based on the VBF & b-tag requirements \rightarrow Multivariate analysis techniques (MVA) to discriminate signal against major backgrounds \rightarrow Reconstructed Higgs candidate mass (invariant mass of two b jets, m_{bb}) distribution is used to extract signal.

 $process \rightarrow allowed strength varies over$ considerably large range.

$t\bar{t}H/tH$, with $H \rightarrow bb$: Results

$\star t\bar{t}H$:

- inclusive
 - $\mu_{t\bar{t}H} = 0.33 \pm 0.26$

significance: obs.(exp.) 1.3σ (4.1 σ)

- Background normalization ($t\bar{t}B, t\bar{t}C$) (backup)
- exclusive in p_T bins
- $\star tH$ (inclusive):
 - Expected and observed 95% CL upper limits
 - Simultaneous with $t\bar{t}H$ (backup)

[CMS-PAS-HIG-19-011]

$H \rightarrow \tau \tau$

Why are we interested in Higgs couplings to fermions?

- In the SM, fermions interact with Higgs boson via Yukawa couplings
- In the many **BSM** theories, deviations of the couplings of the observed Higgs boson to down-type fermions is implied

Why do we use $H \rightarrow \tau \tau$?

- Particularly sensitive to the Higgs boson production at high p_T^{Higgs} and with jets

Analysis targets

• ggF and VBF productions using $H \rightarrow \tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$ final states to measure μ and $\sigma \times BR(H \rightarrow \tau \tau)$

The H $\rightarrow \tau\tau$ decay allows to demonstrate direct coupling of the H boson to fundamental fermions

STXS

- Higgs kinematics can be sensitively modified by BSM physics
- <u>"Simplified Template Cross</u> <u>Sections</u> approach: Measure cross sections separated into production modes, inclusively over the Higgs in specific regions of decays, phase-space ("bins"), defined in terms of specific kinematic variables (p_T^H, m_{jj}, p_T^{Hjj}, p_T^V)
- STXS provide a largely modelindependent way to test for BSM deviations in kinematic distributions.
- Specific bins defined in coordination with the theoretical community

$\rightarrow \tau \tau$: Analysis Strategy (Irreducible background estimation)

- Estimate all backgrounds with two real τ
- Select di-muon events from data, remove muon hits
- Muons are replaced by simulated taus with the same kinematics
- Advantages
 - Decent description of jet and underlying event
 - Less systematic uncertainties
- Used in HIG-18-032

Note:

MET covariance matrix issue does not effect on this analysis

$\tau\tau$: Results (STXS)

Table 9 Tabulated values of the STXS stage-0 and -1.2 signal strengths for the combination of the (CB) CB-, resp. (NN) NN-analysis with the VH-analysis. The upper four lines refer to the inclusive and STXS stage-0 measurements. The values in braces correspond to the expected 68%

confidence intervals for an assumed SM signal. The products of cross sections and branching fraction to τ leptons as expected from the SM with the uncertainties as discussed in Sect. 10.4 are also given

				SM (fb)	μ_s (CB)
Inclusive				3422.28 ± 0.05	$0.93 \pm^{0.12}_{0.12} (^{0.13}_{0.13})$
ggH				3051.34 ± 0.05	$0.97 \pm_{0.18}^{0.20} (_{0.22}^{0.24})$
qqH				328.68 ± 0.03	$0.68 \pm_{0.23}^{0.24} (_{0.23}^{0.24})$
VH				44.19 ± 0.03	$1.80 \pm_{0.42}^{0.46} (_{0.37}^{0.41})$
	N _{jet}	$p_{\rm T}^{\rm H}$ (GeV)			
ggH	= 0	0–10		423.58 ± 0.13	$-0.18\pm^{0.46}_{0.46}~(^{0.45}_{0.44})$
		10-200		1329.36 ± 0.07	
		0–60		451.09 ± 0.14	$-0.87 \pm ^{1.21}_{1.21} (^{1.06}_{0.99})$
	= 1	60–120		287.68 ± 0.14	$3.37 \pm ^{1.23}_{1.13} (^{0.90}_{0.83})$
		120-200		50.04 ± 0.19	$1.94 \pm ^{1.21}_{1.24} (^{1.04}_{0.90})$
	≥ 2	0–200		306.26 ± 0.23	$0.05 \pm^{0.88}_{1.53} (^{0.83}_{0.71})$
		200-300		27.51 ± 0.42	$0.70 \pm_{1.29}^{0.89} (_{0.77}^{0.91})$
		300–∞		7.19 ± 0.47	$1.65 \pm ^{1.28}_{1.46} (^{1.20}_{0.96})$
	N _{jet}	$p_{\rm T}^{\rm H}$ (GeV)	m _{jj} (GeV)		
qqH		0–200	350 - 700	34.43 ± 0.04	$-0.29 \pm ^{1.77}_{1.44} (^{1.31}_{1.32})$
	≥ 2	0–200	$700-\infty$	47.48 ± 0.04	$0.68 \pm^{0.39}_{0.38} (^{0.39}_{0.38})$
		$200-\infty$	350–∞	9.90 ± 0.03	$0.69 \pm_{0.45}^{0.58} (_{0.43}^{0.45})$
	$N_{\rm jet} < 2$	or <i>m</i> _{jj} [0, 350] GeV		209.46 ± 0.03	$1.94 \pm ^{4.55}_{2.93} (^{2.15}_{2.16})$
		$p_{\rm T}^{\rm V}({ m GeV})$			
WH		0–150		20.57 ± 0.03	$0.77 \pm_{0.91}^{0.95} (_{0.85}^{0.90})$
		150–∞		3.30 ± 0.05	$2.65 \pm \substack{1.38 \\ 1.26} \begin{pmatrix} 1.26 \\ 1.15 \end{pmatrix}$
ZH		0–150		11.99 ± 0.06	$1.97 \pm \substack{0.90\\0.81}$ $(\substack{0.79\\0.71})$
		150 − ∞		2.55 ± 0.10	$2.23 \pm ^{1.01}_{0.82} (^{0.78}_{0.61})$

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

[CMS-PAS-HIG-19-010]

- $1.24 \pm ^{0.32}_{0.31} (^{0.31}_{0.30})$ $0.16 \pm_{0.34}^{0.35} (_{0.35}^{0.37})$ $-0.99\pm^{1.21}_{1.19}~(^{1.23}_{1.18})$
- $0.79 \pm_{0.91}^{0.94} (_{0.85}^{0.90})$ $2.65 \pm {}^{1.37}_{1.25} ({}^{1.26}_{1.15})$ $2.00 \pm \substack{0.91 \\ 0.81} \begin{pmatrix} 0.79 \\ 0.71 \end{pmatrix}$ $2.18 \pm ^{1.00}_{0.82} (^{0.78}_{0.61})$

- - $\mu_{incl} = 0.82 \pm 0.11$
 - p-value for compatibility of incl. with SM: 0.10
 - Correlation b/w μ_{ggH} and μ_{qqH} : -0.35

Tahir Javaid

Higgs differential cross section and STXS measurements at CMS

$(VBF) H \rightarrow bb$

*Events categorization in Loose and Tight VBF with BDT Classifier

*Scale and Smearing corrections applied to DeepNN-based regressed b-jets

*Background estimation:

- Resonant Z(bb) + jets [DY & EWK] (simulation) \bullet
- Continuum QCD multijet production (fit to \bullet data) [80, 104] & [146, 200] GeV

*VBF Parton shower and JES being leading systematic sources

* Simultaneous fit to $m_{b\bar{b}}$ extract signal

https://arxiv.org/abs/2308.01253

$|ZZ/ZH \rightarrow 4b|$

*A search for ZZ and ZH production in the *bbbb* final state

larger XS than HH \bullet

*Multi-class multivariate classifier (4b)

Extract the signal and background model ullet

*Major (multi-jet) background estimated from data

*Novel approach to validate the background model

Using synthetic data \bullet

*Signal vs Background **probabilities**

Combined fit in ZZ and ZH regions

$\rightarrow \tau \tau$: Analysis Strategy

*SS, STXS and differential cross-sections

*4 channels considered in ggF and VBF productions:

• $\tau_h \tau_h, \mu \tau_h, e \tau_h, e \mu$

*Events categorized according to jets' p_T and the multiplicity (**NN** multiclassification for signal and background)

*Majority of background estimated from data

- Genuine $\tau\tau$ events: estimated using <u>Tau Embedding</u>
- Jet misidentified as τ_h : Fake factor (F_F) Method

