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Why precision?

|F THAT'S CERN,
I'M NOT HERE.

* Precision physics as

 test of the Standard model
» gate to new physics

- High-Lumi upgrade of LHC :
» theory and experiments must have comparable uncertainties
* needed: %-level accuracy:
perturbation theory @ NNLO and often N3LO



Recipe for a theoretical prediction

Many ingredients
 PDFs to describe the proton structure

* Hard scattering

e Radiation and evolution to hadronic states



Hard Scattering

Looking @ QCD corrections:

do = do; ) + agdoy; o + ag doyy o + az doyz o + -
Perturbative series in the strong coupling

Beyond LO: contributions from diagrams with increasing loops and legs
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Real corrections!
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@LO ’a"j_’j

@ NLO corrections: all contributions must be taken into account

Integrate over the Radiation of an extra gluon
loop momentum k



i i ': unresolved : soft or collinear

the extra gluon can become unresolved :
must add real radiation!

KI N thm [Kinoshita 1962 ; Lee, Nauenberg 1964]

finiteness when summing over all unresolved configurations

 Separate pieces are IR-divergent:

» Explicit poles in € after loop integration
* Implicit divergencies from real radiation



@ 5 pap HOW do we deal with
““*  these divergencies?



& Hard to solve analytically @

NLO example
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& Hard to solve analytically @

NLO example

_ R
don o = j doy; o + J dow, ¢
d(I)m+1 dq)m
e finite
R S v )
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e finite e finite



Subtraction Schemes

1% S
doy; o + j doy; o

(Aol do) + | |

doy o = J
dd

d(I)m+1

m

e finite e finite

e Add and subtract the same quantity do”

» Mimics singular behaviour in IR-limits of do", do®®

* Makes the integrals individually finite

» Simple enough to be analytically integrated over d®,



e Antenna functions

- N e Built from simple matrix elements
X W « Mimic the divergent behaviour in singular limits

3 e Can be easily integrated over phase space

2 M¢ J

S '
dGNLO X m

2+ extra radiation " hard partons

* Exploit factorisation of

?
matrix elements in IR limits What can happen



Jli, Jjllk,  jsoft

Final state hard radiators 43 Annihilation into

hadrons
K

Solved! ;)

[Chen,Jakubcik,Marcoli,

Stagnitto ’23]

Initial state hard radiators

: : ] : Drell-Yan
I

Initial-final state hard radiators

Deep Inelastic
Scattering




Focus: initial-final antenna type antenna function

4

off-shell current éé

Initial-state parton

extra-radiation parton

A

final-state parton
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Deep Inelastic Scattering N3LO
Representative contributions at order a

q1 + g, = p1+py+ (P3) + (py)

-0°<0,¢;=0,p7=0, i=1234
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Phase space integral

Workflow

Reverse
unitarity

Reduction to
master integrals

Boundaries




Reverse Unitarity

[Anastasiou, Melnikov 2002] phase space — (cut) loops
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Reverse Unitarity

—2mis T (p) =

pi2 + 107 i — 10T [pl.z]cm

Diagrammatically

CUT LOOPS
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7
1, This DIS amplitude contains a lot of integrals {Ij}

— how to make things better?

¥ 94

Reduction to Master integrals

[Chetyrkin, Tkachov '81; Laporta 2000]
Reduction into a basis of linearly independent master integrals
(g} C {1}

modulo identities:

I . C master * Integration By Parts
] Il ]k gk integrals  Lorentz Invariance

k rational * symmetry relations

coefficients



DE for Feynman integrals

[Barucchi, Ponzano ’73; Kotikov ’91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000]




How to solve a differential equation:

 (Generic solution
 Boundary CC)hdi’ti()NA Rewrite the DE in canonical

form [Henn 2013]: solution
in terms of iterated integrals

. ke =
Boundary Conditions 0.8 =€A™(2)- 8

» (Consistency conditions

Finding relations between boundaries
* Evaluation in some kinematic limit

Fix the remaining ones



Getting to know the RRR families

Physical 4-cuts of the 3 loop inclusive DIS amplitude

; _[d’)m[d’)pz[dl)pg 11 11 Hl
ol e JeoP ) @oP (pHl 93 (02 (P30 D)

65 families

 Few number of MI for each family —4 cuts
M| PER FAMIY - Total: 1620 Mls (No symmetries between families included)

MAX

- DE matrix M is a function of M(z,€) .. 5020,

AVG = playground for automatic tools! eg LIBRA

MIN * Analysis of their parametric representation to
simplify the DE & get to a canonical form

@ 25 50 [Henn 2013]



Results

Canonical DE for all the families v/

We can find a generic solution y@

Boundary conditions 5o
* Numerical evaluation with AMF Low @ 200 digits (~80% done...) & PSLQO

» Constraints from symmetry relations between the families

» Calculation of the amplitude — which boundaries are actually needed

_+ Extend calculation to RVV and RRV layers
Outlook: | - | o
* Ultimate goal: obtaining the full set of integrated initial-final antennae






