

NNLO QCD corrections to polarized and unpolarized semi-inclusive DIS

35th Rencontres de Blois — 22/10/2024

Based on <u>2401.16281</u> and <u>2404.08597</u>

Leonardo Bonino

Introduction

Electron-Ion Collider (EIC)

BNL EIC now firmly on its path toward construction

- e^{-N} collision (DIS) with high-luminosity 10^{33} –
- Center-of-mass energy range: 20 140 GeV
- Full final state identification and polarised collisions (SIDIS)
- Theoretical accuracy needed: NNLO

SIDIS measurements @ EIC: [Aschenauer, Borsa, Sassot, Van Hulse '19]

- Useful for full flavour decomposition for (pol)PDFs
- Useful for full flavour separation for FFs
- Reduction in uncertainties of strange distributions by more then 60%

$$-10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

SIDIS = semi-inclusive deepinelastic scattering

Introduction

Global aNNLO fits to FFs

[Abele, de Florian, Vogelsang '21] aNNLO (approximate NNLO) corrections to $q \rightarrow q$ channel from threshold resummation formalism

• Same for polarised case

[Borsa, Sassot, de Florian, Vogelsang '22] aNNLO results in FFs global fits: SIA (e^+e^-) + COMPASS + HERMES

- with aNNLO surpassing quality of NLO fit only for $Q^2 \ge 2 \,\mathrm{GeV^2}$
- aNNLO for SIDIS missing significant contribution

aNNLO global fits with neural-network from Mont Blanc collaboration [Abdul Khalek, Bertone, Khoudli, Nocera '22]

Experiment	Q^2 2	≥ 1.5 (GeV^2	Q^2	≥ 2.0 (GeV^2	Q^2]	≥ 2.3 (GeV^2	Q^2 :	≥ 3
	#data	NLO	NNLO	#data	NLO	NNLO	#data	NLO	NNLO	#data	, NI
SIA	288	1.05	0.96	288	0.91	0.87	288	0.90	0.91	288	0.
COMPASS	510	0.98	1.14	456	0.91	1.04	446	0.91	0.92	376	0.9
HERMES	224	2.24	2.27	160	2.40	2.08	128	2.71	2.35	96	2.
TOTAL	1022	1.27	1.33	904	1.17	1.17	862	1.17	1.13	760	1.
				•						•	

Introduction

Global aNNLO fits to polPDFs

Helicity parton distribution functions $\Delta f(x, Q^2) = f^+(x, Q^2) - f^-(x, Q^2)$ Gluon spin contribution to the proton spin: $\Delta G = \int_{-\infty}^{\infty} \Delta g(x) dx$

[de Florian, Sassot, Stratmann, Vogelsang '08 '14] NLO global analysis [Borsa, de Florian, Sassot, Stratmann, Vogelsang '24] aNNLO global analysis

- [DSSV '14] evidence for polarisation of gluons in the proton (STAR)
- DIS + SIDIS + proton-proton (x > 0.12 cut on SIDIS data)

[Bertone, Chiefa, Nocera (MAP) '24] aNNLO global analysis (neural-network)

• DIS + SIDIS only $\rightarrow \Delta g$ almost unconstrained

Improvements with inclusion of the full NNLO corrections?

4

 $\ell(k) p(P) \rightarrow \ell(k') h(P_h) X$ with $Q \ll M_Z$

• $Q^2 = -q^2$: invariant mass of γ^* (q = k - k')

• $x = \frac{Q^2}{2P \cdot q}$: Bjorken scaling variable

• $z = \frac{P \cdot P_h}{P \cdot q}$: fractional energy of the observed final state hadron h

- $y = \frac{P \cdot q}{P \cdot k}$: energy transfer (inelasticity)
- $W^2 = (k + P)^2$: mass squared of recoiling system X against scattered lepton

Semi-inclusive (z-differential) deep ($Q^2 \gg M_p^2$) inelastic ($W^2 \gg M_p^2$) scattering

$$Q^2 = -q^2 = xys$$

 \sqrt{s} : center of mass energy of lepton-nucleon system

Kinematics of SIDIS

Unpolarised differential cross section

Spin-averaged triple-differential cross section $\frac{d^3 \sigma^h}{dx dy dz} =$

- Transverse (\mathscr{F}_T^h) and longitudinal (\mathscr{F}_I^h) 'fragmentation' structure functions (SF)
 - Defined in terms of the hadronic tensor $W_{\mu\nu}$ (from F_1 and F_2)
 - Relevant SF for neutral-current semi-inclusive deep inelastic scattering on unpolarized nucleon

Typical observable: SIDIS hadron multiplicity $\frac{dM^{h}}{dz} = \frac{d^{3}\sigma^{h}/dxdydz}{d^{2}\sigma^{DIS}/dxdy}$

 Double-differential (DIS) cross section known up to N3LO $\frac{\mathrm{d}^2 \sigma^{DIS}}{2} = \frac{4\pi \alpha^2}{2} \left[\frac{1 + (1 - y)^2}{2} \mathcal{F}_T(x, Q^2) + \frac{1 - y}{y} \right]$ O^2 dxdy 2y

$$=\frac{4\pi\alpha^2}{Q^2}\left[\frac{1+(1-y)^2}{2y}\mathcal{F}_T^h(x,z,Q^2)+\frac{1-y}{y}\mathcal{F}_L^h(x,z,Q^2)\right]$$

$$\frac{y}{\mathcal{F}_L}(x,Q^2)$$

Kinematics of SIDIS

Unpolarised structure functions

$$\mathcal{F}_i^h(x,z,Q^2) = \sum_{p,p'} \int_x^1 \frac{\mathrm{d}\hat{x}}{\hat{x}} \int_z^1 \frac{\mathrm{d}\hat{z}}{\hat{z}} f_p\left(\frac{x}{\hat{x}},\mu_F^2\right) D_{p'}^h\left(\frac{z}{\hat{z}}\right)$$

- The coefficient functions $\mathscr{C}^i_{p'p}$ encode the hard scattering part of the process $(p \to p')$

$$\mathscr{C}^{i}_{p'p} = C^{i,(0)}_{p'p} + \frac{\alpha_s(\mu_R^2)}{2\pi} C^{i,(1)}_{p'p} + \left(\frac{\alpha_s(\mu_R^2)}{2\pi}\right)^2 C^{i,(0)}_{p'p}$$

Un-physical renormalised and mass-factorised (finite) objects

Structure functions satisfy the factorisation theorem ($Q \gg \Lambda_{QCD}$) \rightarrow initial μ_F and final μ_A factorisation scales $\left(\frac{z}{2}, \mu_A^2\right) \mathscr{C}^i_{p'p}\left(\hat{x}, \hat{z}, Q^2, \mu_R^2, \mu_F^2, \mu_A^2\right), \quad i = T, L$

• Initial and final states collinear divergences reabsorbed in PDFs f_p and FFs $D_{p'}^h$ by mass factorisation (MS)

 $C^{(1)}_{qg}$

- LO: only $q \rightarrow q$ channel contributes: $C_{qq}^{T,(0)} = e_q^2 \delta(1 - \hat{x}) \delta(1 - \hat{z}), \quad C_{qq}^{L,(0)} = 0$
- NLO: [Altarelli, Ellis, Martinelli, Pi '79] [Baier, Fey '79]
 - Also gluons in initial $(g \rightarrow q)$ or final state $(q \rightarrow g)$ contribute
 - Opening of longitudinal channels

NNLO corrections: channel decomposition

[LB, Gehrmann, Stagnitto <u>2401.16281</u>]: all NNLO corrections Four new channels @ NNLO

$$\begin{split} C_{qq}^{i,(2)} &= C_{\bar{q}\bar{q}}^{i,(2)} = e_q^2 C_{qq}^{i,\mathrm{NS}} + \left(\sum_j e_{q_j}^2\right) C_{qq}^{i,\mathrm{PS}}, \\ C_{\bar{q}q}^{i,(2)} &= C_{q\bar{q}}^{i,(2)} = e_q^2 C_{\bar{q}q}^{i}, \\ C_{q'q}^{i,(2)} &= C_{\bar{q}'\bar{q}}^{i,(2)} = e_q^2 C_{q'q}^{i,1} + e_{q'}^2 C_{q'q}^{i,2} + e_q e_{q'} C_{q'q}^{i,3} \\ C_{\bar{q}'q}^{i,(2)} &= C_{q'\bar{q}}^{i,(2)} = e_q^2 C_{q'q}^{i,1} + e_{q'}^2 C_{q'q}^{i,2} - e_q e_{q'} C_{q'q}^{i,3} \\ C_{gq}^{i,(2)} &= C_{g\bar{q}}^{i,(2)} = e_q^2 C_{gq}^{i}, \\ C_{qg}^{i,(2)} &= C_{g\bar{q}}^{i,(2)} = e_q^2 C_{gq}^{i}, \\ C_{qg}^{i,(2)} &= C_{\bar{q}\bar{q}}^{i,(2)} = e_q^2 C_{qg}^{i}, \\ C_{qg}^{i,(2)} &= C_{\bar{q}g}^{i,(2)} = E_{qg}^{i,(2)} + E_{qg}^{i} \\ C_{qg}^{i,(2)} &= C_{qg}^{i,(2)} + E_{qg}^{i} \\ C_{qg}^{i,(2)} &= C_{qg}^{i,(2)} + E_{qg}^{i} \\ C_{qg}^{i,(2)} &= C_{qg}^{i,(2)} + E_{qg}^{i} \\ C_{qg}^{i,(2)} &= C_{qg}^{i} \\ C_{qg}^{i,(2)} &= C_{qg}^{i,(2)} + E_{qg}^{i} \\ C_{qg}^{i,(2)} &= C_{qg}^{i} \\ C_{qg}^{i,(2)} \\ C_{qg}^{i,(2)} &= C_{qg}^{i} \\ C_{qg}^{i,$$

NNLO corrections: channel decomposition

[LB, Gehrmann, Stagnitto <u>2401.16281]</u>

Check with approximate NNLO results

Our results in agreement with:

- [Abele, de Florian, Vogelsang '21]: aNNLO corrections to $q \rightarrow q$ channel from threshold resummation formalism
 - $\hat{x} \rightarrow 1$ and $\hat{z} \rightarrow 1$: large double-logarithmic terms
- [Goyal, Moch, Pathak, Rana, Ravindran '23]: leading colour contribution to non-singlet $q \rightarrow q$ channel

Further checks:

- Scale dependent terms are found to be as predicted by RGE
- Integrated specific subprocess contributions over final-state momentum \hat{z} and recover respective contribution to inclusive result

Numerical results

K-factors up to NNLO

SIDIS N^kLO/LO with channels decomposition for π^+

- NNPDF3.1 PDF set [NNPDF '17]
- BDSSV FF set [Borsa, Sassot, De Florian, Stratmann, Vogelsang '22]
- 7-point scales variation ($\mu_A = \mu_F$)
- Only dominant channels presented

COMPASS kinematics and cuts:

 $\sqrt{s} = 17.35 \,\mathrm{GeV}$

• $Q^2 > 1 \,\text{GeV}^2$ and $W > 5 \,\text{GeV}$

• Good perturbative convergence increasing Q^2

• Gluonic channels play a role for lower Q^2

Comparison with data

The COMPASS experiment

"COmmon Muon Proton Apparatus for Structure and Spectroscopy" @ CERN

COMPASS [COMPASS '16] kinematics

- $160 \,\text{GeV}\,\mu$ -beam on fixed isoscalar target (⁶LiD)
- $\sqrt{s} \approx 17.35 \,\mathrm{GeV}$
- Events accepted if $Q^2 > 1 \,\mathrm{GeV}^2$ and $W > 5 \,\mathrm{GeV}$

Focus on π^+ production \longrightarrow

Comparison with data

π^+ production: ratio to NLO

1.2 1.0 0.8	0.004 < x < 0.01 0.50 < y < 0.70 0.50 < y < 0.70 0.50 < y < 0.70	0.01 < x < 0.02 0.50 < y < 0.70 $\phi \phi \phi \phi \phi$ $Q_{avg} = 1.65 \text{ GeV}$	0.02 < x < 0.03 0.50 < y < 0.70	0.03 < x < 0.04 0.50 < y < 0.70 0.50 < y < 0.70 0.50 < y < 0.70	0.04 < x < 0.06 0.50 < y < 0.70 0.50 < y < 0.70 0.50 < 0.70	0.06 < x < 0.10 0.50 < y < 0.70 $Q_{avg} = 3.80 \text{ GeV}$	0.10 < x < 0.14 0.50 < y < 0.70 y < 0.70 $Q_{avg} = 4.66 \text{ GeV}$	ratio to d M	$^{h}/\mathrm{d}z$ (NLO)
1.2 - 1.0 - 0.8 -	0.004 < x < 0.01 0.30 < y < 0.50 0.30 < y < 0.50	0.01 < x < 0.02 0.30 < y < 0.50 0.30 = 1.34 GeV	0.02 < x < 0.03 0.30 < y < 0.50 0.30 < y < 0.50 0.30 < y < 0.50 0.30 < y < 0.50 0.30 < 0.50 0.30 < 0.50	0.03 < x < 0.04 0.30 < y < 0.50	0.04 < x < 0.06 0.30 < y < 0.50 0.30 < y < 0.50 0.30 < y < 0.50 0.30 < 0.50 0.30 < 0.50	0.06 < x < 0.10 0.30 < y < 0.50 0.30 < y < 0.50 $Q_{avg} = 3.10 \text{ GeV}$	0.10 < x < 0.14 0.30 < y < 750 0.10 < x < 0.14 0.30 < y < 750 0.10 < 0.14 0.30 < y < 750 0.14 < 0.14 0.14 <	0.14 < x < 0 0.30 < y < 0 0.50 0.30 < y < 0 0.50	0.18 < x < 0.40 0.30 < y < 0.50 $p_{\phi} p_{\phi} p_{\phi}$
-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01 < x < 0.02 0.20 < y < 0 0.30 0.20 < y < 0 0.30 0.20 0	0.02 < x < 0.03 0.20 < y < 0.30 0.20 < y < 0.30 0.20 < y < 0.30 0.20 < y < 0.30 0.20 < 0.00	0.03 < x < 0.04 0.20 < y < 0.30 0.20 < y < 0.30 0.20 < y < 0.30	0.04 < x < 0.06 0.20 < y < 0.30 $\overline{1}$	0.06 < x < 0.10 0.20 < y < 0.30 $\phi \phi \phi \phi \phi \phi \phi \phi$ $Q_{\rm avg} = 2.45 \ {\rm GeV}$	0.10 < x < 0.14 0.20 < y < 0.30 0.20 < y < 0.30 0.20 < 0.14 0.20 < 0.30	0.14 < x < 0.18 0.20 < y < 0.30 0.20 < y < 0.30 0.20 < y < 0.30 0.20 < y < 0.30	0.18 < x < 0.40 0.20 < y < 0.30 $\phi_{\phi}\phi_{\phi}\phi_{\phi}\phi_{\phi}\phi_{\phi}$
	1.2 - 1.0 - 0.8 -	0.01 < x < 0.02 0.15 < y < 0.20 0.15 < y < 0.20 0.15 0.15 0.15 0.15 0.15 0.15 0.20 0.15 0.20 0.15 0.20 0.20 0.15 0.20 0.	0.02 < x < 0.03 0.15 < y < 0.20 0.15 < y < 0.20 0.15 < 0.20 0.15 < 0.20	0.03 < x < 0.04 0.15 < y < 0.20 0.15 < y < 0.20	0.04 < x < 0.06 0.15 < y < 0.20	0.06 < x < 0.10 0.15 < y < 0.20 0.15 < y < 0.20	0.10 < x < 0.14 0.15 < y < 0.20 $\phi \phi \phi \phi \phi \phi \phi$ $Q_{avg} = 2.51 \text{ GeV}$	0.14 < x < 0.18 0.15 < y < 0.20 0.15 < y < 0.20 0.15 < 0.20 0.15 < 0.20	$0.18 < x < 0.40 \\ 0.15 < y < 0.20$
	 → COMPASS NLO NNLO 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.02 < x < 0.03 \\ 0.10 < y < 0 \\ \textbf{y} < 0 \\ \textbf{y} \\ $	$\begin{array}{c} 0.03 < x < 0.04 \\ 0.10 < y < 0.15 \\ \end{array}$	$\begin{array}{c} 0.04 < x < 0.06 \\ 0.10 < y < 0.15 \\ \end{array}$	$\begin{array}{c} 0.06 < x < 0.10 \\ 0.10 < y < 0.15 \end{array}$	$\begin{array}{c} 0.10 < x < 0.14 \\ 0.10 < y < 0.15 \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ Q_{\rm avg} = 2.12 \ {\rm GeV} \\ 0.2 \ 0.4 \ 0.6 \ 0.8 \end{array}$	$\begin{array}{c} 0.14 < x < 0.18 \\ 0.10 < y < 0.15 \end{array}$	0.2 0.4 0.6 0.8 z
			z	z	z	<i>z</i> 14	z	z	

- SIDIS/DIS with DIS from APFEL++ [Bertone '17]
- *x* and *y* bins integrated
- Ratio to NLO

$$\frac{\mathrm{d}M^{\pi^+}}{\mathrm{d}z} = \int_x \int_y \frac{\mathrm{d}^3 \sigma^{\pi^+} / \mathrm{d}z}{\mathrm{d}^2 \sigma^{DIS} / z}$$

NNLO improves description of data in many bins

Kinematics of polSIDIS

Structure function and asymmetry

Scattering of longitudinally polarised lepton and nucleon

- Same kinematics and channel decomposition as unpolarised SIDIS
- Relevant SF for neutral-current polarised semi-inclusive deep inelastic scattering ($g_2^h \approx 0$)

$$2g_{1}^{h}(x, z, Q^{2}) = \sum_{p, p'} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \int_{z}^{1} \frac{d\hat{z}}{\hat{z}} \Delta f_{p}\left(\frac{x}{\hat{x}}, \mu_{F}^{2}\right) D_{p'}^{h}\left(\frac{z}{\hat{z}}, \mu_{A}^{2}\right) \Delta \mathscr{C}_{p'p}\left(\hat{x}, \hat{z}, Q^{2}, \mu_{R}^{2}, \mu_{F}^{2}, \mu_{A}^{2}\right)$$

$$\bullet \Delta \mathscr{C}_{p'p} = \Delta C_{p'p}^{(0)} + \frac{\alpha_{s}(\mu_{R}^{2})}{2\pi} \Delta C_{p'p}^{(1)} + \left(\frac{\alpha_{s}(\mu_{R}^{2})}{2\pi}\right)^{2} \Delta C_{p'p}^{(2)} + \mathcal{O}(\alpha_{s}^{3}).$$

Same channel decomposition and same result from [Goyal, Lee, Moch, Pathak, Rana, Ravindran '24] 🗸

Typical observable: SIDIS double spin asymmetry $A_1^h(x, z, Q^2) =$

•
$$A_1^h = \frac{\sigma_{1/2}^h - \sigma_{3/2}^h}{\sigma_{1/2}^h + \sigma_{3/2}^h}$$
 is measured, with $\sigma_{1/2}^h$ photo–absorption x

$$\frac{g_1^h(x, z, Q^2)}{F_1^h(x, z, Q^2)} \text{ with } 2F_1^h = \mathscr{F}_T^h$$

xs for photons with spin antiparallel to target nucleon spin

$$p = \begin{pmatrix} k \\ e^{-} \\ e^{-} \\ k \\ e^{-} \\ e^{-} \\ k \\ e^{-} \\ e^$$

Our focus: all coefficients $\Delta C_{n'n}^{(2)}$

[LB, Gehrmann, Löchner, Schönwald, Stagnitto 2404.08597]

Numerical results

 $g_1^{\pi^+}$ with channels decomposition for COMPASS kinematics [COMPASS '10]

- aNNLO polPDFs and FFs from $\ensuremath{\mathsf{BDSSV}}$
- $g \rightarrow q$ and $q \rightarrow g$ more important at NNLO
- Sizeable corrections at small x and Q^2

$$g_1^{\pi^+}$$
 with for EIC $\sqrt{s} = 45 \,\mathrm{GeV}$

- Collider-like kinematic cuts on y
- aNNLO polPDFs and FFs from BDSSV
- 7 point scale variation
- Good perturbative convergence

Comparison with data

$\pi^+\,{\rm production}$ at COMPASS and HERMES

$$A_1^{\pi^+}(x, z, Q^2) = \frac{g_1^{\pi^+}(x, z, Q^2)}{F_1^{\pi^+}(x, z, Q^2)}$$

- [COMPASS '10] [HERMES '18]
- Comparing DSSV (NLO) and BDSSV (aNNLO) sets
- Effects in small x region due to (mainly) polPDFs

Improvement with NNLO? Only a global full-NNLO fit will tell ...

- Full set of NNLO QCD corrections to polarised and unpolarised SIDIS now available
- aNNLO \neq full NNLO: gluonic channels and small-x region fundamental
- Promising improvement in description of data for π^+ for SIDIS, polSIDIS?
- Universal ingredients to study light and heavy hadron production at colliders
 - Improvement in global fits for FFs and polPDFs
 - NNLO frontier needed for EIC phenomenology

Conclusions

• LO: $C_{qq}^{T,(0)} = e_q^2 \delta(1 - \hat{x}) \delta(1 - \hat{z}), \quad C_{qq}^{L,(0)} = 0$

NLO: [Altarelli, Ellis, Martinelli, Pi '79] [Baier, Fey '79]
 Screenshots from [Anderle, Ringer, Vogelsang '12]

$$C_{qq}^{T,(1)}(\hat{x},\hat{z}) = e_q^2 C_F \left[-8\delta(1-\hat{x})\delta(1-\hat{z}) + \delta(1-\hat{x}) \left[\tilde{P}_{qq}(\hat{z}) \ln \frac{Q^2}{\mu_F^2} + L_1(\hat{z}) + L_2(\hat{z}) + (1-\hat{z}) \right] + \delta(1-\hat{z}) \left[\tilde{P}_{qq}(\hat{x}) \ln \frac{Q^2}{\mu_F^2} + L_1(\hat{x}) - L_2(\hat{x}) + (1-\hat{x}) \right] + \frac{2}{(1-\hat{x})_+(1-\hat{z})_+} - \frac{1+\hat{z}}{(1-\hat{x})_+} - \frac{1+\hat{x}}{(1-\hat{z})_+} + 2(1+\hat{x}\hat{z}) \right], \qquad (49)$$
$$C_{qq}^{L,(1)}(\hat{x},\hat{z}) = 4e_q^2 C_F \hat{x}\hat{z},$$

LO and NLO results

Details of the calculation

VV: two-loops form-factors in space-like kinematics

RV: one-loop squared matrix elements in terms of one-loop bubble and box integrals (known in exact form in ϵ) $C_{j\leftarrow i}^{\mathrm{RV}} \propto \int \mathrm{d}\Phi_2(k_j, k_k; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left|\mathscr{M}^{\mathrm{RV}}\right|^2 \propto \mathscr{J}(x, z) \left|\mathscr{M}^{\mathrm{RV}}\right|^2(x, z)$

- Fixed \hat{x} and $\hat{z} \rightarrow$ phase space integral fully constrained \rightarrow only expansion in end-point distributions $\hat{x} = 1$ and $\hat{z} = 1$
- From (photon) fragmentation antenna functions [Gehrmann, Schürmann '22]

RR: integrations over three-particle phase space with multi-loop techniques

$$C_{j\leftarrow i}^{\mathrm{RR}} \propto \int \mathrm{d}\Phi_3(k_j, k_k, k_l; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left|\mathcal{M}^{\mathrm{RR}}\right|^2$$

- Reduction to master integrals (MI) with IBP identities \rightarrow 21 MI
- From fragmentation antenna functions [LB, Marcoli, Gehrmann, Schürmann, Stagnitto 2406.09925]

20

Paying attention to analytical continuations

family	master	deepest pole	at $x = 1$	
	I[0]	ϵ^0	$(1-x)^{1-2\epsilon}$	
	I[5]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	
А	I[2, 3, 5]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	(
	I[7]	ϵ^0	$(1-x)^{1-2\epsilon}$	
П	I[-2,7]	ϵ^0	$(1-x)^{1-2\epsilon}$	
В	I[-3,7]	ϵ^0	$(1-x)^{1-2\epsilon}$	
	I[2,3,7]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	(
C	I[5,7]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	
U	I[3,5,7]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	
	I[1]	ϵ^0	$(1-x)^{-2\epsilon}$	
D	I[1,4]	ϵ^0	$(1-x)^{-2\epsilon}$	
	I[1,3,4]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	(
E	I[1,3,5]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	(
G	I[1,3,8]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	(
Н	I[1, 4, 5]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	
Ι	I[2, 4, 5]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	
т	I[4,7]	ϵ^0	$(1-x)^{-2\epsilon}$	
J	I[3,4,7]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	
K	I[3,5,8]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	
L	I[4, 5, 7]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	
М	$\overline{I}[4,5,8]$	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	

 Table 1.
 Summary of the double real radiation master integrals.

Analytic continuation in RV contribution

Avoid ambiguities associated with the analytic continuation of box integrals: segment the (x, z)-plane into four sectors \rightarrow expressions real and continuous across boundaries [Gehrmann, Schürmann '22]

• Example: $Box(s_{12}, s_{23})$

$$\begin{aligned} \operatorname{Box}(s_{ij}, s_{ik}) &= \frac{2(1-2\epsilon)}{\epsilon} A_{2,LO} \frac{1}{s_{ij}s_{ik}} \\ &\times \left[\left(\frac{s_{ij}s_{ik}}{s_{ij} - s_{ijk}} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk} - s_{ij} - s_{ik}}{s_{ijk} - s_{ij}} \right) \right. \\ &+ \left(\frac{s_{ij}s_{ik}}{s_{ik} - s_{ijk}} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk} - s_{ij} - s_{ik}}{s_{ijk} - s_{ik}} \right) \\ &- \left(\frac{-s_{ijk}s_{ij}s_{ik}}{(s_{ij} - s_{ijk})(s_{ik} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij} - s_{ik})}{s_{ijk} - s_{ik}} \right) \end{aligned}$$

$$\begin{aligned} a_1(s_{12}, s_{23}) &= \frac{s_{123} - s_{12} - s_{23}}{s_{123} - s_{12}} = -\frac{z}{1 - x - z}, \\ a_2(s_{12}, s_{23}) &= \frac{s_{123} - s_{12} - s_{23}}{s_{123} - s_{23}} = z, \\ a_3(s_{12}, s_{23}) &= \frac{s_{123} s_{13}}{(s_{13} + s_{23})(s_{12} + s_{13})} = -\frac{xz}{1 - x - z} \end{aligned}$$
$$\begin{aligned} \tilde{a}_1(s_{12}, s_{23}) &= 1 - \frac{1}{a_1(s_{12}, s_{23})} = \frac{1 - x}{z}, \\ \tilde{a}_3(s_{12}, s_{23}) &= 1 - \frac{1}{a_3(s_{12}, s_{23})} = \frac{(1 - x)(1 - z)}{xz} \end{aligned}$$

 R_1

 R_2

RR contribution

[Gehrmann, Schürmann '22]: limited set of RR (\mathscr{X}_4^0) antenna functions relevant to photon fragmentation

- Now full set of initial-final RR antenna functions [LB, Gehrmann, Schürmann, Stagnitto in preparation]
- 12 denominators (4 cut propagators) → 21 MI in 12 families
- Subset of integrated $2 \to 3$ antenna functions contribute to RR corrections of CF $C_{j\leftarrow i}^{\text{RR}} \propto \mathcal{X}_{i,jkl}^{0,id.j}$
- MI solved with differential equations, boundary conditions from *z*-integration and comparing to inclusive result

$$\begin{array}{l} D_1 = (q-k_j)^2 \,,\\ D_2 = (p+q-k_j)^2 \,,\\ D_3 = (p-k_l)^2 \,,\\ D_4 = (q-k_l)^2 \,,\\ D_5 = (p+q-k_l)^2 \,,\\ D_6 = (q-k_j-k_l)^2 \,,\\ D_7 = (p-k_j-k_l)^2 \,,\\ D_8 = (k_j+k_l)^2 \,,\\ D_9 = k_j^2 \,,\\ D_{10} = k_l^2 \,,\\ D_{11} = (q+p-k_j-k_l)^2 \,,\\ D_{12} = (p-k_j)^2 + Q^2 \frac{z}{x} \,, \end{array}$$

set of denominator factors

family	master	deepest pole	at $x = 1$	at z :
	I[0]	ϵ^0	$(1-x)^{1-2\epsilon}$	(1-z)
٨	I[5]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	(1-z)
А	I[2,3,5]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	(1-z)
	I[7]	ϵ^0	$(1-x)^{1-2\epsilon}$	(1-z)
р	I[-2,7]	ϵ^0	$(1-x)^{1-2\epsilon}$	(1-z)
Б	I[-3,7]	ϵ^0	$(1-x)^{1-2\epsilon}$	(1-z)
	I[2,3,7]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	(1-z)
C	I[5,7]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	(1-z)
C	I[3,5,7]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	(1-z)
	I[1]	ϵ^0	$(1-x)^{-2\epsilon}$	(1 - z)
D	I[1,4]	ϵ^0	$(1-x)^{-2\epsilon}$	(1-z)
	I[1,3,4]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	(1-z)
E	I[1,3,5]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	(1-z)
G	I[1,3,8]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	(1-z)
Н	I[1, 4, 5]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	(1-z)
Ι	I[2,4,5]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	(1-z)
т	I[4,7]	ϵ^0	$(1-x)^{-2\epsilon}$	(1-z)
J	I[3,4,7]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	(1-z)
K	I[3,5,8]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	(1-z)
L	I[4, 5, 7]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	$(1-z)^{-1}$
М	I[4, 5, 8]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	(1-z)

 Table 1.
 Summary of the double real radiation master integrals.

Example:
$$q + p \rightarrow k_j + k_l + k_k$$
 and $z = x(k_j + p)^2/(-q^2)$
 $I[-3,7] \propto \int d^d k_j d^d k_l \delta(D_9) \delta(D_{10}) \delta(D_{11}) \delta(D_{12}) \frac{D_3}{D_7}$

Details of the calculation

Larin and MSbar schemes

Projectors to extract g_1^h contain γ_5 and $\varepsilon^{\mu\nu\rho\sigma}$ [Zijlstra, van Neerven '94]

Different ME^2 but same integration of RR and RV contributions

- same MIs as for unpol SIDIS
- NLO V and NNLO VV from vector form factors

Mass factorisation in Larin \rightarrow Larin-scheme coefficient functions $\Delta \mathscr{C}^L$

van Neerven '98] [Moch, Vermaseren, Vogt '14] \rightarrow same for g_1^h

• Check NNLO scale dependence from RGE in both schemes More checks against aNNLO and g_1 [Zijlstra, van Neerven '94], same result from [Goyal, Lee, Moch, Pathak, Rana, Ravindran '24] \checkmark

• Consistent treatment in d-reg \rightarrow Larin prescription $\gamma_{\mu}\gamma_{5} = \frac{i}{3!} \varepsilon_{\mu\nu\rho\sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$ [Larin, Vermaseren '91] [Larin '93]

• Scheme transformation to $\overline{\text{MS}} \to g_1 = \Delta \mathscr{C}^{\overline{\text{MS}}} \otimes \Delta f^{\overline{\text{MS}}} = (\Delta \mathscr{C}^L \otimes Z^{-1}) \otimes (Z \otimes \Delta f^L) = \Delta \mathscr{C}^L \otimes \Delta f^L$ [Matiounine, Smith,

QCD corrections $\Delta \mathscr{C}_{qq}^{PS} = C$

Analytical results

Pure singlet qq channel

$$C_{F}\left\{s_{x/z}P_{1}(x,z)\left(-4\ln(s_{x/z})\arctan(s_{x/z})+4\ln(zs_{x/z})\arctan(zs_{x/z})+2\operatorname{Ti}_{2}(s_{x/z})\right)\right.\\\left.-2\operatorname{Ti}_{2}(-s_{x/z})-4\operatorname{Ti}_{2}(zs_{x/z})\right)+\delta(1-z)\left((x-3)\ln(x)+2(x-1)-(x+2)\frac{1}{2}\ln(x)^{2}\right)\right.\\\left.-8\frac{xz-x-z+1}{z}+3\frac{xz-x+z-1}{z}\ln(x)+3\frac{xz+x-z-1}{z}\ln(z)\right.$$

$$\left.-2\frac{xz+x+z+1}{z}\ln(x)\ln(z)\right\},$$
(1)

$$= \frac{x^{2}z + xz^{2} + x + z}{xz},$$

$$= \frac{5x^{4}z^{2} + 18x^{3}z^{3} + 18x^{3}z + 5x^{2}z^{4} + 52x^{2}z^{2} + 5x^{2} + 18xz^{3} + 18xz + 5z^{2}}{x^{2}z^{2}},$$

$$= \frac{5x^{3}z^{2} - 5x^{3}z - 5x^{2}z^{3} - 34x^{2}z^{2} + 34x^{2}z + 5x^{2} - 5xz^{3} - 34xz^{2} + 34xz + 5x + 5z^{2} - 5z}{xz^{2}},$$

$$= \frac{5x^{3}z^{2} + 5x^{3}z - 5x^{2}z^{3} + 34x^{2}z^{2} + 34x^{2}z - 5x^{2} + 5xz^{3} - 34xz^{2} - 34xz + 5x - 5z^{2} - 5z}{xz^{2}},$$

$$= \frac{x^{3}z^{2} - x^{3}z + x^{2}z^{3} + 6x^{2}z^{2} - 6x^{2}z - x^{2} - xz^{3} - 6xz^{2} + 6xz + x - z^{2} + z}{xz^{2}}.$$
(1)

Our results

~ 1 MB files with expressions in FORM format available in ancillary files of arXiv submissions

https://arxiv.org/abs/2401.16281

https://arxiv.org/abs/2404.08597

```
ancillary.inc ~
** SIDIS coefficient functions up to NNLO from:
** Semi-inclusive deep-inelastic scattering at NNLO in QCD
** L. Bonino, T. Gehrmann and G. Stagnitto
** FORM readable format
** Notation, according to eq.(6) of the paper:
            C[order][component][a2b][label] with
            - order: 1 = NLO, 2 = NNLO
            - component: L = Longitudinal, T = transverse
**
            – a2b: means a –> b, for a and b partons
            - label (it can be none, NS, PS, 1, 2, 3)
**
** Symbols:
           NC = 3: number of colours
**
           NF = 5: number of active flavours 🛑 👝 🔵
                                                                          ancillary_pol.inc <
**
**
                                           ** Scales:
                                           ** Polarized SIDIS coefficient functions up to NNLO from:
          LMUR = ln(muR^2/Q2)
**
**
          LMUF = ln(muF^2/Q2)
                                           ** Polarized semi-inclusive deep-inelastic scattering at NNLO in QCD
**
          LMUA = ln(muA^2/Q2)
                                           ** L. Bonino, T. Gehrmann, M. Loechner, K. Schoenwald and G. Stagnitto
          with Q2 = -q2, invariant mass of
**
               muR: renormalisation scale
**
                                           ** FORM readable format
               muF: initial-state factorisat
**
               muA: final-state factorisatio
**
                                           ** Notation, according to eq.(8) of the paper:
**
                                                       DC[order][a2b][label] with
                                           **
** Functions:
                                                       - order: 1 = NL0, 2 = NNL0
             Li2(a) = PolyLog(2,a)
                                                       – a2b: means a –> b, for a and b partons
                                           **
             Li3(a) = PolyLog(3,a)
**
                                                       – label (it can be none, NS, PS, 1, 2, 3)
             sqrtxz1 = sqrt(1 - 2*z + z*z +
                                           **
**
**
             poly2 = 1 + 2*x + x*x - 4*x*z
                                           ** Symbols:
             sartxz2 = sqrt(poly2)
**
                                                      NC = 3: number of colours
             sartxz3 = sqrt(x/z)
**
                                                      NF = 5: number of active flavours
             InvTanInt(x) = int 0^x dt arcta
**
             T(region): Heaviside Theta func \frac{1}{**} Scales:
**
                                                     LMUR = ln(muR^2/Q2)
** Distributions:
                                                     LMUF = ln(muF^{2}/02)
            Dd([1-x]) is the Dirac delta fun **
                                                     LMUA = ln(muA^2/Q2)
            Dn(a,[1-x]) = (ln^a(1-x)/(1-x))_{**}
**
                                                     with Q2 = -q2, invariant mass of the photon
            same for z
**
                                                          muR: renormalisation scale
                                                          muF: initial-state factorisation scale
** Kinematic regions in (<u>x,z</u>)–plane: as defin
                                                          muA: final-state factorisation scale
            ui = Ui \text{ for } i = 1, 2, 3, 4
            ri = Ri, ti = Ti for i = 1,2
                                           ** Functions:
            Ri, Ti and Ui defined in eq. (5. **
**
                                                        Li2(a) = PolyLog(2,a)
                                                        Li3(a) = PolyLog(3,a)
** Constants: pi, zeta3 = Zeta(3) with Zeta R
                                                        sartxz1 = sqrt(1 - 2*z + z*z + 4*x*z)
                                                        poly2 = 1 + 2*x + x*x - 4*x*z
*****
                                                        sartxz2 = sqrt(poly2)
                                                        sartxz3 = sqrt(x/z)
                                                        InvTanInt(x) = int_0^x dt arctan(t)/t : Arctangent integral
                                           **
                                                        T(region): Heaviside Theta function
                                           **
                                           ** Distributions:
                                                       Dd([1-x]) is the Dirac delta function of argument [1-x]
                                                       Dn(a, [1-x]) = (ln^a(1-x)/(1-x))_+ (plus-prescription) for a = 0, 1, 2, 3
                                                       same tor z
                                           **
                                           ** Kinematic regions in (x,z)-plane: as defined in 2201.06982
                                                       ui = Ui for i = 1,2,3,4
                                                       ri = Ri, ti = Ti for i = 1,2
                                           **
                                                       Ri, Ti and Ui defined in eq. (5.9), (5.12) and (5.16)
                                           **
                                           ** Constants: pi, zeta3 = Zeta(3) with Zeta Riemann Zeta function
    25
```

