MAX-PLANCK-INSTITUT FÜR PHYSIK

Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

Christian Biello Max-Planck Institute for Physics Garching bei München, Germany

> 35th Rencontres de Blois Blois, Loire Valley, France October 22nd, 2024

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

Image credit: Nature

N^3LO Hard Process N^xLO *NNLO* **Migh** precision NLO

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

Image credit: Nature

 $\alpha_s^n \log^{n-1}$ $\alpha_s^n \log^n$ $\alpha_s^n \log^{n+1}$

 α_s^3

 α_s^2

 $\alpha_{\rm s}^{\rm I}$

 α_s^0

and hadronisation **Mathematic Realistic description** NNLL $\mathbb{Z}N^{y}LL$ resummation NLL

 N^3LO Hard Process N^xLO *NNLO* **Migh** precision NLO

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

LO

LL

Image credit: Nature

 $\alpha_s^n \log^{n-1}$ $\alpha_s^n \log^n$ $\alpha_s^n \log^{n+1}$

 α_s^3

 α_s^2

 α_s^{\perp}

 $\alpha_s^{\rm U}$

Parton shower $PS_{N^{y}LL}$ and hadronisation **Mathematic Realistic description** NNLL $\mathbb{Z}N^{y}LL$ resummation NLL

 N^3LO Hard Process N^xLO *NNLO* **Migh** precision NLO

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

LO

LL

Matching $N^{x}LO + PS_{N^{y}LL}$

Migh precision

Mathematic Realistic simulation of LHC events

Mathematics Resummation

Image credit: Nature

- Solved problem for long time. Completely understood and fully automated.
- Two main approaches:
- **POWHEG** [0409146, 0709.2092, 1002.2581] MC@NLO [0204244]

Shower avoiding an unphysical matching scale. **POWHEG idea:** implement a Monte Carlo generator that produces just one emission (the hardest one) which alone gives the correct NLO result.

Problem: Match fixed-order predictions with Parton

Nason [hep-ph/0409146]

Two main approaches:

- MINNLOPS [1908.06987]
 - in the POWHEG framework
- **GENEVA** [1311.0286]

State-of-the-art for precision LHC phenomenology.

Lots of ongoing efforts. Many processes already implemented, beyond the color-singlet production.

Ebert, Rottoli, Wiesemann, Zanderighi, Zanoli [2402.00596]

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

Minnlops

NNLO a posteriori reweighing of MiNLO'

Classes of processes in MiNNLOps

Zγ [2010.10478, 2108.11315] *WW* [2103.12077] ZZ [2108.05337] $WH/ZH(H \to b\bar{b})$ [2112.04168] *γγ* [2204.12602] WZ [2208.12660] SMEFT studies [2204.00663, 2311.06107]

> *bbZ* [2404.08598] *bbH* [in progress]

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

 $gg \to H, W/Z$ [1908.06987, 2006.04133, 2402.00596, 2407.01354]

 $b\bar{b} \rightarrow H$ [2402.04025]

first (and currently only) NNLO+PS method for heavy-quark final states

tt [2012.14267,2112.12135] *bb* [2302.01645, in progress]

Classes of processes in MiNNLOps

Zγ [2010.10478, 2108.11315] *WW* [2103.12077] ZZ [2108.05337] $WH/ZH(H \to b\bar{b})$ [2112.04168] *γγ* [2204.12602] WZ [2208.12660] SMEFT studies [2204.00663, 2311.06107]

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

$gg \to H, W/Z$ [1908.06987, 2006.04133, 2402.00596, 2407.01354]

 $b\bar{b} \rightarrow H$ [2402.04025]

first (and currently only) NNLO+PS method for heavy-quark final states

tt [2012.14267,2112.12135] *bb* [2302.01645, in progress]

Full top dependence

Why? Increasing precision calls for the inclusion of effects, like mass corrections!

The Higgs production via gluon fusion with exact top-quark mass dependence has been recently implemented in the MiNNLOPS generator.

Niggetiedt, Wiesemann [2407.01354]

Full top dependence

Why? Increasing precision calls for the inclusion of effects, like mass corrections!

The Higgs production via gluon fusion with exact top-quark mass dependence has been recently implemented in the MiNNLOPS generator.

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

Niggetiedt, Wiesemann [2407.01354]

A rare but interesting channel

Why bbH? Higgs production via bottom fusion is a rare but crucial channel, background of HH searches.

Feature. Adaptation of the MiNNLOPS method to account for the extra scale dependence induced by an overall Yukawa coupling that is MS renormalised

massless bottoms (5 flavour scheme)

- Collinear initial-state logs are resume into bottom PDFs
- $\mathcal{O}(m_h/m_H)$ are neglected: low accurate description of bottom kinematic distribution

event generator \rightarrow fully-exclusive results

With the generated events, we have the opportunity to explore a lot of physics!

Several pheno studies can be conducted, such as the **b-tagging** of jets.

News. We have investigated the properties of the flavour jets in $bb \rightarrow H$

- **EXP**, a bjet contains at least a B-hadron
- **IFN**, IR-safe method called Interleaved Flavour Neutralisation Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler [2306.07314]

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

CB, Sankar, Wiesemann, Zanderighi [in progress]

A new class of processes

Why? Modelling high-multiplicity processes is mandatory for LHC studies. We must go beyond $2 \rightarrow 2$ processes.

MiNNLOPS now can perform predictions for heavy-quark pair production in association to a color singlet. Feature. Treatment of the singular structure for heavy quarks in generic kinematics. Applied for the first time to $bb\ell\ell$.

C. Biello, Recent results for LHC simulations matched with Parton Shower using MiNNLOPS

Mazzitelli, Sotnikov, Wiesmann [2404.08598]

The massive calculation

Why bbH with massive quarks? The massless calculation is not accurate in some region of the phasespace and for B-hadron observables.

quarks in final state.

 $\mathcal{A}^{(2)} = \log(m_h)$ -terms

CB, Mazzitelli, Sankar, Wiesemann, Zanderighi [in progress]

massive calculation (four-flavour scheme)

- Computing higher orders is extremely non-trivial due to higher multiplicity
- Mass effects $O(m_b/m_H)$ are present at any order

- Feature. It requires both the MiNNLOPS extensions for Yukawa induced processes and heavy

s + const. +
$$\mathcal{O}\left(\frac{m_b}{Q}\right)$$

Massive vs massless

NNLO corrections in the 4FS solve the long-standing issue of discrepancies between the flavour-scheme predictions.

Higgs and one b-jet observables are in agreement between the two **MiNNLOPS** generators.

CB, Mazzitelli, Sankar, Wiesemann, Zanderighi [in progress]

11/12

- NLO+PS are the standard of any analysis for a realistic modelling at colliders
- MiNNLOPS is a flexible and adaptive method to be applied to several processes with different features!
- Thanks to the accuracy of novel parton showers and the improvements in fixed-order calculations, we are in a promising period for the matching

Thank you for the attention!

- NLO+PS are the standard of any analysis for a realistic modelling at colliders
- MiNNLOPS is a flexible and adaptive method to be applied to several processes with different features!
- Thanks to the accuracy of novel parton showers and the improvements in fixed-order calculations, we are in a promising period for the matching

Backup slides

Resummation from factorisation

Consider a physical quantity $\mathcal{O}(M^2, m^2)$ in which m^2 measures the distance from the IR region.

If
$$m^2 \ll M^2$$
, $\mathcal{O}(M^2, m^2) =$

 $\mathcal{O} \text{ is } \mu - \text{independent } \Rightarrow \frac{1}{H} \frac{d \ln H}{d \ln \mu^2} = -\frac{1}{S} \frac{d \ln S}{d \ln \mu^2} =: \gamma(\mu^2)$

Solving the differential equation,

() for $m^2 \rightarrow 0$

$$\left[-\int_{m^2}^{M^2} \frac{dq^2}{q^2} \gamma(q^2)\right]$$

Sudakov form factor: it captures at all order the log-enhanced terms

m

Transverse momentum resummation

What is the probability that a Higgs boson is produced with transverse momentum $< p_T$?

$$\mathscr{P} \simeq - \# \alpha_s \ln^2 \frac{m_H}{p_T} + \mathscr{O}(\alpha_s^2) \to \exp\left[-\# \alpha_s\right]$$

for small p_T we need

to sum up the logs In general we have a tower of logs

$$\exp\left[-\sum_{n,m}\alpha_{s}^{n}\ln^{m}\frac{m_{H}}{p_{T}}\right]$$

m = n + 1 \rightarrow Leading Logs (LL) \rightarrow Next-To-LL (NLL) m = n

$$m = n - 1 \longrightarrow \text{Next-To-NLL}$$
 (NM

INN

NLL

LL

FOWHEG
machinery
Dece

$$\bar{B}(\Phi_{Xj}) = B(\Phi_{Xj}) + \left[V(\Phi_{Xj}) + \int d\phi_{rad}R(\Phi_{Xj})\right]$$

$$\overline{B}(\Phi_{Xj}) = \mathcal{F}(p_T, Q) \left\{ B(\Phi_{Xj}) \left(1 - \alpha_s S_1\right) + \left[V(\Phi_{Xj}) + \int d\phi_{rad} R(\Phi_{Xjj})\right] + \left[D_3 \text{-term}\right] F(\Phi_{Xj}) \right\}$$

-> NNLO X NLO Xj **MiNNLOps in a nutshell**

observables.

transverse momentum limit: $d\sigma = d\sigma^{sing} + d\sigma^{reg}$.

$$\frac{d\sigma^{sing}}{dp_T d\Phi_X} = \frac{d}{dp_T} \left\{ \mathcal{F}(p_T) \, \mathcal{L}(p_T) \right\} =: \exp\left[-\frac{d}{dp_T} \left\{ \mathcal{F}(p_T) \, \mathcal{L}(p_T) \right\} =: \exp\left[-\frac{d}{dp_T} \left\{ \mathcal{F}(p_T) \, \mathcal{L}(p_T) \right\} \right\} =: \exp\left[-\frac{d}{dp_T} \left\{ \mathcal{F}(p_T) \, \mathcal{L}(p_T) \right\} =: \exp\left[-\frac{d}{dp_T} \left\{ \mathcal{F}(p_T) \, \mathcal{L}(p_T) \right\} \right\} =: \exp\left[-\frac{d}{dp_T} \left\{ \mathcal{F}(p_T) \, \mathcal{L}(p_T) \, \mathcal{L}(p_T) \right\} \right\} =: \exp\left[-\frac{d}{dp_T} \left\{ \mathcal{F}(p_T) \, \mathcal{L}(p_T) \, \mathcal{L}(p_T)$$

Monni, Nason, Re, Wiesemann, Zanderighi [1206.3572]

Split the differential inclusive cross-section into the singular and regular part in the small

MiNNLOps in a nutshell

The modified POWHEG function is

$$\bar{B}(\Phi_{XJ}) = e^{-\tilde{S}(p_T)} \left\{ B \left(1 - \alpha_s(p_T) \,\tilde{S}^{(1)} \right) + V + \int d\phi_{rad} \, R + \left[D(p_T) - D^{(1)} - D^{(2)} \right] \times F^{corr} \right\}$$

MiNLO' structure

- In the singular part, the QCD scales must be $\mu_F \sim \mu_R \sim p_T$.
- For the regular part, different scale choices can be performed:
 - the transverse momentum p_T (original choice)
 - the hard scale Q (FOatQ=1)

Extra term: it ensures NNLO accuracy. F^{corr} encodes the spreading of the D-terms upon the full Φ_{XI} .

Gavardi, Oleari, Re [2204.12602]

5FS results

SusHi with $\mu_R = \mu_F = m_H$

- NNLO cross section is reduced by $\sim 20\,\%$ •
- Scale uncertainties significantly reduced at NNLO
- Our MINNLOPS predictions are in agreement with SusHi within the uncertainties

Same PDFs: NNPDF40_nnlo_as_01180 with 5 active flavours

Comparison of the total inclusive cross section with FO results obtained with the public code

Harlander, Lieber, Mantel [1212.3249]

SusHi)	MINLO'	MINNLO _{PS}	
⊦7.2% pb -7.5% pb	$0.571(1)^{+17.4\%}_{-22.7\%} \mathrm{pb}$	$0.509(8)^{+2.9\%}_{-5.3\%} \mathrm{pb}$	

Comparison of MiNLO' and MiNNLOPS

Transverse momentum spectrum of the Higgs boson

Rapidity distribution of the Higgs boson

- At small $p_{T,H}$, MiNNLOPS significantly damps the distribution
- At high $p_{T,H}$, MiNNLOPS and MiNLO' coincide, both NLO accurate
- MINNLOPS has a flat negative correction in the rapidity y_H distribution

Comparison with FO results

Transverse momentum spectrum of the Higgs

Full agreement at large transverse momenta $p_{T,H}$ with analytic fixed-order predictions

NLO Hj NNLO

Harlander, Ozeren, Wiesemann [1007.5411] Harlander, Tripathi, Wiesemann [1403.7196]

Comparison with resummed results

Transverse momentum spectrum of the Higgs

We compare the MiNNLO implementation with the NNLO+NNLL results for low and high $p_{T,H}$

- Acceptable agreement for small $p_{T,H}$
- The shower has an effect on the tail

NNLO+NNLL Harlander, Tripathi, Wiesemann [1403.7196]

Heavy-quark pair production

against ATLAS, CMS and LHCb data.

C. Biello, Backup slides

Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi [2012.14267]

The method was generalised for coloured final states with an intensive phenomenological comparison

Massification

First two-loop massification in Bhabha scattering Penin [hep-ph/0508127]

Extension for non-abelian theories from factorisation principles

Mitov, Moch [hep-ph/0612149]

First massification of internal loops in Bhabha using the SCET formalism

Becher, Melnikov [0704.3582]

Recent application for QCD amplitudes Wang, Xia, Yang, Ye [2312.12242]

We applied decoupling relations for α_{s} and $\overline{\rm MS}$ Yukawa

Cross-checks with the independent implementation of Chiara Savoini

Biello, Mazzitelli, Sankar, Wiesemann, Zanderighi [in progress]

