

Probing the Early Universe Simons Observatory and LiteBIRD

Benjamin Beringue Postdoc @ APC-CNRS October, 22nd 2024

Rencontres de Blois - 2024

Credit : ESA and the Planck Collaboration

Science from the large scale cosmic microwave background polarization structure

Inflation

CMB photons decoupling

Radiation dominated expansion

Benjamin Beringue, APC - Rencontres de Blois 2024

Structure formation and galaxy evolution

Dark Ages

CMB photons decoupling

Radiation dominated expansion

- Large scale B-modes

- Primordial power

spectrum (via TT,TE,EE)

- Primordial bispectrum

$$-Y_p$$
 and $N_{\rm eff}$ (via

damping tail)

Benjamin Beringue, APC - Rencontres de Blois 2024

Dark Ages

Properties of reionisation:

- Duration (via kSZ)
- Mean free path of
- photons (via kSZ)

Structure formation and galaxy evolution

- Σm_{ν} (via lensing potential)

- -Galaxy evolution
- cluster properties (via tSZ)
- feedback efficiency (via tSZ)

- Properties of Dark energy:

 $-\sigma_8$ (via lensing and tSZ)

Intensity (Temperature)

Maps from ACT DR4 : Naess et al 24

Maps from ACT DR4 : Naess et al 24

Benjamin Beringue, APC - Rencontres de Blois 2024

[Credit: E. Calabrese]

7

60+ Institutions

Simons Observatory site

Chajnantor plateau (~5200m above sea level)

Benjamin Beringue, APC - Rencontres de Blois 2024

Done shot by Deborah Kellner

PolarBear / Simons Array

Benjamin Beringue, APC - Rencontres de Blois 2024

CLASS

PolarBear / Simons Array

Benjamin Beringue, APC - Rencontres de Blois 2024

CLASS

SIMONS

NÓMICO,

11

Done shot by Deborah Kellner

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale polarisation modes

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale polarisation modes

Benjamin Beringue, APC - Rencontres de Blois 2024

SO Large Aperture Telescope (LAT)

- ► 6m cross-Dragone telescope
- ► 30.000 TES detectors
- ► 6 frequency bands
- Observing small scale anisotropies over a large fraction of the sky

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale polarisation modes

SO:UK + SO:JP

- ► 3 additional telescopes
- ► 30.000 TES detectors
- Extended frequency range

Benjamin Beringue, APC - Rencontres de Blois 2024

SO Large Aperture Telescope (LAT)

- ► 6m cross-Dragone telescope
- ► 30.000 TES detectors
- •6 frequency bands
- Observing small scale anisotropies over a large fraction of the sky

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale
 polarisation modes

SO:UK + SO:JP + SO:FR ?

- ► 3 additional telescopes
- ► 30.000 TES detectors
- Extended frequency range

Benjamin Beringue, APC - Rencontres de Blois 2024

30.000 TES detectors

6 frequency bands

 Observing small scale anisotropies over a large fraction of the sky

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale
 polarisation modes

SO:UK + SO:JP

- ► 3 additional telescopes
- ► 30.000 TES detectors
- Extended frequency range

Benjamin Beringue, APC - Rencontres de Blois 2024

SO PV array

- -70% diesel consumption
- ►+9% efficiency

SO Large Aperture Telescope (LAT)

- ► 6m cross-Dragone telescope
- ► 30.000 TES detectors
- •6 frequency bands
- Observing small scale anisotropies over a large fraction of the sky

SO Small Ape Telescopes (S

- Nominally 3 telesc
- ► 30.000 TES detec
- 6 frequency band
- Focusing on large polarisation mod

SO:UK + SO

- 3 additional telesci
- 30.000 TES detect
- Extended frequer range

SO PV array diesel consumption efficiency

ge Aperture cope (LAT)

Dragone telescope detectors y bands small scale **es** over a large he sky

	Parameter	SO-Baseline ^b	$\mathbf{SO}\text{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	Current ^e	Method "
		(no syst)				hun -
D · · · ·		0.0004	0.000	0.000	0.00	D.D
Primordial	r	0.0024	0.003	0.002	0.03	BB + ext delens
perturbations	$e^{-2 au}\mathcal{P}(k=0.2/\mathrm{Mpc})$	0.4%	$\mathbf{0.5\%}$	0.4%	3%	$\mid TT/TE/EE$
	$f_{ m NL}^{ m local}$	1.8	3	1	5	$\kappa \kappa \times \text{LSST-LSS} + 3\text{-pt}$
		1	2	1		kSZ + LSST-LSS
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$
Neutrino mass	$\Sigma m_{ u}$	0.033	0.04	0.03	0.1	$\kappa\kappa$ + DESI-BAO
		0.035	0.04	0.03		$tSZ-N \times LSST-WL$
		0.036	0.05	0.04		tSZ-Y + DESI-BAO
Deviations from Λ	$\sigma_8(z = 1 - 2)$	1.2%	2 %	1%	7%	$\kappa\kappa + LSST-LSS$
		1.2%	2 %	1%		$tSZ-N \times LSST-WL$
	H_0 (ACDM)	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$
Galaxy evolution	$\eta_{ m feedback}$	2%	3 %	2%	50 - 100%	kSZ + tSZ + DESI
·	$p_{ m nt}$	6%	8%	5%	50 - 100%	kSZ + tSZ + DESI
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)

Benjamin Beringue, APC - Rencontres de Blois 2024

67°47'

Ś

	Parameter	SO-Baseline ^b (no syst)	$\mathbf{SO-Baseline}^{c}$	$\rm SO-Goal^d$	Current ^e	Method Sorth
Primordial perturbations	$r e^{-2 au} \mathcal{P}(k=0.2/\mathrm{Mpc}) f_{\mathrm{NL}}^{\mathrm{local}}$	$0.0024 \\ 0.4\% \\ 1.8 \\ 1$	0.003 0.5% 3 2	$0.002 \\ 0.4\% \\ 1 \\ 1 \\ 1$	$0.03 \\ 3\% \\ 5$	BB + ext delens TT/TE/EE $\kappa\kappa \times \text{LSST-LSS} + 3\text{-pt}$ kSZ + LSST-LSS
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$
Neutrino mass	$\Sigma m_ u$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	0.04 0.04 0.05	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.04 \end{array}$	0.1	$\kappa\kappa$ + DESI-BAO tSZ-N × LSST-WL tSZ-Y + DESI-BAO
Deviations from Λ	$\sigma_8(z=1-2) \ H_0 \; (\Lambda { m CDM})$	$egin{array}{c} 1.2\% \\ 1.2\% \\ 0.3 \end{array}$	2% 2% 0.4	$1\% \\ 1\% \\ 0.3$	7%	$\kappa\kappa + LSST-LSS$ tSZ-N × LSST-WL $TT/TE/EE + \kappa\kappa$
Galaxy evolution	$\eta_{ m feedback} \ p_{ m nt}$	2% 6%	3 % 8 %	2% 5%	50-100% 50-100%	kSZ + tSZ + DESI kSZ + tSZ + DESI
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)

Benjamin Beringue, APC - Rencontres de Blois 2024

67°47'

Ś

 ΔN_{eff}

	Parameter	SO-Baseline ^b (no syst)	$\mathbf{SO-Baseline}^{c}$	$\rm SO-Goal^d$	Current ^e	Method to
Primordial perturbations	$r e^{-2 au} \mathcal{P}(k=0.2/\mathrm{Mpc}) f_{\mathrm{NL}}^{\mathrm{local}}$	0.0024 0.4% 1.8 1	0.003 0.5% 3 2	$0.002 \\ 0.4\% \\ 1 \\ 1$	$0.03 \\ 3\% \\ 5$	$BB + \text{ext delens}$ $TT/TE/EE$ $\kappa\kappa \times \text{LSST-LSS} + 3\text{-pt}$ $\text{kSZ} + \text{LSST-LSS}$
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$
Neutrino mass	$\Sigma m_ u$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	0.04 0.04 0.05	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.04 \end{array}$	0.1	$\kappa\kappa$ + DESI-BAO tSZ-N × LSST-WL tSZ-Y + DESI-BAO
Deviations from Λ	$\sigma_8(z=1-2)$	$1.2\% \\ 1.2\%$	2 % 2 %	$1\% \\ 1\%$	7%	$\kappa\kappa + LSST-LSS$ tSZ-N × LSST-WL
	H_0 (ACDM)	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$
Galaxy evolution	$\eta_{ m feedback} \ p_{ m nt}$	2% 6%	3 % 8 %	2% 5%	50-100% 50-100%	kSZ + tSZ + DESI kSZ + tSZ + DESI
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)

Benjamin Beringue, APC - Rencontres de Blois 2024

67°47'

ທ໌

	Parameter	$SO-Baseline^{b}$	$\mathbf{SO} extsf{-Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\operatorname{e}}$	Method "
		(no syst)				hun A
						"simonsobservatory."
Primordial	r	0.0024	0.003	0.002	0.03	BB + ext delens
perturbations	$e^{-2 au} \mathcal{P}(k=0.2/\mathrm{Mpc})$	0.4%	$\mathbf{0.5\%}$	0.4%	3%	TT/TE/EE
	$f_{ m NL}^{ m local}$	1.8	3	1	5	$\kappa\kappa \times \text{LSST-LSS} + 3\text{-pt}$
	V 1 1 2	1	2	1		kSZ + LSST-LSS
D 1 4	77	0.055	0.07	0.05	0.0	
Relativistic species	N_{eff}	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$
Neutrino mass	$\Sigma m_{ u}$	0.033	0.04	0.03	0.1	$\kappa \kappa + \text{DESI-BAO}$
		0.035	0.04	0.03		$tSZ-N \times LSST-WL$
		0.036	0.05	0.04		tSZ-Y + DESI-BAO
Deviations from A	-(n-1, 2)	1.907	n 07	107	707	
Deviations from Λ	$\sigma_8(z=1-2)$	1.2%	270 20%	1 %	170	$\kappa \kappa + Lool-Loo$ + S7 N \sim I SST WI
	$H_{\rm c}$ (ACDM)	1.270	470 0 1	1/0	0.5	$TT/TF/FF \perp \kappa\kappa$
	H_0 (ACDM)	0.5	0.4	0.5	0.5	$ II / IE / EE + \kappa \kappa$
Galaxy evolution	$\eta_{ m feedback}$	2%	3 %	2%	50 - 100%	kSZ + tSZ + DESI
•	$p_{ m nt}$	6%	8%	5%	50 - 100%	kSZ + tSZ + DESI
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)

Benjamin Beringue, APC - Rencontres de Blois 2024

67°47'

LiteBIRD overview

- Lite (Light) satellite for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket.
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B*-modes
- Final combined sensitivity: 2.2 µK·arcmin

22/10/2024

LiteBIRD collaboration **PTEP 2023**

H3-32L

LiteBIRD overview

LiteBIRD reformation phase

- After the ISAS/JAXA mission definition review, LiteBIRD is under rescope studies to consolidate the mission's feasibility with the same scientific goals.
- The LiteBIRD collaboration will spend approximately one year (~ late 2025) on the studies of the reformation plan.

22/10/2024

Benjamin Beringue, APC - Rencontres de Blois

LiteBIRD collaboration **PTEP 2023**

LiteBIRD main scientific objectives

- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
 - Making a discovery or ruling out well-motivated inflationary models
 - Insight into the quantum nature of gravity
- The inflationary (i.e. primordial) *B*-mode power is proportional to the tensor-to-scalar ratio, r
- Current best constraint: r < 0.032 (95% C.L.)(I Tristram et al. 2022, combining BK18 and Planck PR4)
- LiteBIRD will improve current sensitivity on *r* by a factor ~ 50
- L1-requirements (no external data):
 - For r = 0, total uncertainty of $\delta r < 0.001$
 - For r = 0.01, 5- σ detection of the reionization $(2 \le \ell \le 10)$ and recombination $(11 \le \ell \le 200)$ peaks independently
- L2-requirements:
 - $\sigma_{\text{stat}} < 6 \times 10^{-4}$ and $\sigma_{\text{sys}} < 6 \times 10^{-4}$
 - Additional security margin of $\sigma_{\text{margin}} < 6 \times 10^{-4}$

22/10/2024

Benjamin Beringue, APC - Rencontres de Blois

26

Optical depth, reionization and neutrino masses

- LiteBIRD will provide a cosmic-variance limited measurement of the *E*-mode power spectrum at large scales ($2 < \ell < 200$)
- This will lead to improved constraints on:
 - <u>Reionization</u>
 - Cosmic-variance measurement of the optical depth to reionization $\Rightarrow \sigma(\tau) \approx 0.002 \Rightarrow \times 2$ improvement with respect to Planck (Planck Int.Res. LVII, 2020)
 - Improved constraints on reionization history models: 35% improvement on the uncertainty of $\Delta(z_{reion})$
 - <u>Neutrino masses</u>
 - $\times 2$ improvement on $\sigma(\sum m_v)$
 - $\sigma(\sum m_v) = 12 \text{ eV} \Rightarrow 5\sigma$ detection for a minimum value of $\sum m_v =$ 60 meV (allowed by flavour-oscillation experiments) or larger
 - Potentially allow to distinguish between the inverted neutrino mass ordering and the normal ordering

Mapping the hot gas in the Universe

- The Sunyaev-Zel'dovich effect provides a mean to map the distribution of hot electrons in the Universe
- Improved sensitivity and frequency coverage of LiteBIRD crucially contributes to improve these studies
- Combination with Planck adds the benefit of angular resolution
- LiteBIRD will improve ×10 the noise in the SZ map wrt Planck
- This will allow to:
 - Produce a high-fidelity SZ map over the full-sky essentially free of contamination at $\ell < 200$
 - Test theories of structure formation via **hot-gas tomography** from SZ × galaxy surveys correlations
 - Search form WHIM in filaments connecting clusters
 - Study an inhomogeneous reionization process via crosscorrelations of $SZ \times CMB$ optical depth
 - Measure the mean gas T_e via the relativistic SZ
 - Improve constraints on $S_8 = \sigma_8 (\Omega_m/0.3)^{0.5}$ by 15%

22/10/2024

Galactic astrophysics

- LiteBIRD will provide 15 high-sensitivity polarization full-sky maps from 40 to 402 GHz
- Sensitivity improved by a factor of 5 at 40 GHz and 10 at 402, with respect to Planck
- Gain in spectral resolution

- Wealth of Galactic science possible:
 - Geometry of the Galactic magnetic field
 - Interstellar turbulence
 - Dust composition
 - Grain alignment
 - Cold clumps
 - Geometry of synchrotron-bright loops
 - SED of the synchrotron emission
 - Nature of AME and spectral variations...
 - ... and many others!

 40°

36°00'00''

 32°

 28°

22/10/2024

on full-sky maps from 40 to 402 GHz 10 at 402, with respect to Planck

Thanks a lot !

beringue@apc.in2p3.fr beringueb

Rencontres de Blois 2024

Credit : ESA and the Planck Collaboration

Science from the large scale cosmic microwave background polarization structure

