

First results from ICARUS at the Short-Baseline Neutrino program

Alice Campani on behalf of the ICARUS collaboration 35th Recontres de Blois, 22 October 2024

35th Rencontres de Blois

PARTICLE PHYSICS AND COSMOLOGY

Istituto Nazionale di Fisica Nucleare

THE STERILE NEUTRINO PUZZLE

LSND and **MiniBooNE** reported anomalous signals of ν_e excess at low • energy: this could be explained with an additional $\Delta m_{new}^2 \sim 1.0 \ eV^2$ driving $\nu_{\mu} \rightarrow \nu_{\rho}$ oscillations at small distances and pointing towards the possible existence of **non-standard** heavier **sterile neutrino(s)**

Phys. Rev. D 64, 112007 (2001)

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

- Neutrino-4 $E)_{
 m averange}$.2 N(L, E) / N(L,1.0 0.8 0.6 1.5 2.0 1.0 L/E
 - Possible hint from **Neutrino-4**: measurements are compatible with $\Delta m_{\rm new}^2 \sim 7.3 \ eV^2$ and $\sin^2(2\theta) \sim 0.36$ - same L/E as ICARUS NuMI ν_e dis. channel Jetp Lett. 116, 669–682 (2022)

Phys. Rev. D 103, 052002 (2021)

Blois, 22 October 2024 2

THE SHORT-BASELINE NEUTRINO PROGRAM

- 0.8 GeV Booster Neutrino Beam (BNB) and for ICARUS also Neutrino at the Main Injector (NuMI)

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

Same technology (*near* \rightarrow **SBND**, *far* detector \rightarrow **ICARUS**) to minimize beam, bkg & detector systematics

Sensitive search in the ν_e (ν_μ) (dis)appearance channels to confirm/rule out past anomalies in data

Main goals: precision search of **IeV** mass scale sterile neutrino and high statistics measurements of $\nu - Ar$ cross sections in view of DUNE - also studies of Beyond Standard Model (BSM) channels

Blois, 22 October 2024 3

THE SHORT-BASELINE NEUTRINO PROGRAM

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

THE ICARUS EXPERIMENT IN A NUTSHELL

- self-triggering detectors 3D imagining, topological and calorimetric reconstruction: ideal for ν physics!
- **ICARUS T600**: the first large scale LArTPC 760 tons of pure LAr, **470 tons** active mass LAr purification by copper filters and molecular sieves
- 2 cryostats $(3.6 \times 3.9 \times 19.6 \text{ m}^3)$ 2 TPCs each with central cathode $E_d = 1.5 \text{ kV/cm}$, 1.5 m drift, $t_d \sim 1 \text{ ms}$
- 3 planes at 0, ±60° read ionization charge, 54k wires, 3 mm pitch
- 360 8" TPB-coated PMTs behind the wires measure scintillation light providing to timing and trigger
- 2.85 m overburden and external 4π Cosmic Ray Tagger (CRT) to suppress and tag incoming cosmics - 11 μ tracks per trigger
- system, TPC readout electronics and PMTs CRT (overburden) installation completed in 2021 (2022)

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

Liquid Argon Time Projection Chambers (LArTPCs) [C. Rubbia, 1977] are high granularity, continuously sensitive,

Successful **3 yr physics run at LNGS** and **intensive overhaul at CERN** to upgrade cryogenics, LAr purification

Blois, 22 October 2024 5

DETECTOR OPERATIONS AND ACQUISITION

- **Data taking** started in June 2022, 3 physics run since then: run 3 (both ν beams) 15 March 12 July 2024
- Steady data taking with excellent stability at BNB rates > 4Hz, >90% efficiency with E_{dep}>200 MeV
- Impurities in LAr ~40 p.p.t. O₂ equivalent \rightarrow free $\tau_{\rho} \approx$ 7-8 ms, ~full track det. efficiency in the 1.5 m drift
- **Trigger:** light signal registered simultaneously by 4 PMT pairs in a 6 m longitudinal slice in coincidence with BNB (1.6 μ s), NuMI (9.5 μ s) beam spills - CRT activity in 2 ms is recorded to tag cosmics (rate ~0.7 Hz)

Run	Duration	BNB (FHC) [*] positive focusing	NuMI (FHC) [*] positive focusing	NuMI (RHC) [*] negative focusing
	Jun-July '22	0.4 020	0.68 020	_
2	Dec '22-July '23	2.05 1020	2.74 1020	
3	Mar-July '24 [**]	1.36 020	_	2.82 1020
Total	/	3.82 1020	3.42 1020	2.82 1020
[*] FHC = Forward Horn Current, RHC = Reverse Horn Current [**] Reduced duration \rightarrow exposure due to prolonged accelerator shutdown				Further details in: Eur. Phys. J. C 83:467 (2023)

[**] Keduced duration \rightarrow exposure due to prolonged accelerator shutdown

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

Collected statistics (PoT)

DETECTOR PERFORMANCE

DETECTOR CALIBRATION AND MODELLING

NEUTRINO CANDIDATES EVENT RECONSTRUCTION

- Two LArTPC event reconstruction frameworks:
 - **Pandora**, pattern recognition software widely used in LArTPCs •
 - **SPINE**, entirely based on Machine Learning techiques (<u>arxiv</u>)
- Powerful tool to validate data processing and analysis and study data/MC agreeemnt is the **visual scanning** of collected events:
 - reconstruction of the ν vertex using a BNB ν_{μ} CC sample
 - matching of light & charge signals: $\sim Im$ agreement along beam
 - test selection/reconstruction performance in view of analyses

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

ICARUS PHYSICS PROGRAM

- **SBN physics program**: sterile neutrino search with the study of BNB ν_{μ} , ν_{e} interactions measured at different distances from the beam target thanks to SBND and ICARUS LArTPCs
- Before the joint-analysis with SBND, ICARUS focuses on a standalone physics program:
 - **Blinding policy** defined to ensure robust and unbiased interpretation of the collected data: analyses are validated using sidebands, a subset of the full dataset and variables insensitive to oscillation
 - Analysis of the ν_{μ} disappearance channel with BNB (selection ready and validated), to be complemented with ν_{ρ} disappearance from NuMI data - the goal is to verify the Neutrino-4 claim
 - study of ν_{μ}, ν_{e} interactions from NuMI to measure ν -Ar cross sections and optimize reconstruction • in the energy range that **DUNE** will explore (selection ready, sidebands studied on a fraction of data)
 - search for sub-GeV BSM signals using NuMI forthcoming publication of the **di-muon decay channel** analysis

ν_{μ} DISAPPEARANCE ANALYSIS: SELECTION & SYSTEMATICS

- Selection of fully contained ν_{μ} CC events with $I\mu$ +N protons Event kinematic extracted from <u>range</u> measurements
 - (I) Light signal within 1.6 µs beam spill in coincidence with reconstructed TPC tracks and no CRT signal
 - (II) A muon with L_{track} >50 cm, N > 1 protons with $E_K > 50 \text{ MeV} (L_{track} > 2.3 \text{ cm})$, PID scores in range (III) No additional pion/photon
- Residual cosmic background <1%
- - comparison of (un)calibrated MC gives preliminary estimates of detector effects A reduction of the impact of detector systematics is expected from improved MC, while Φ, σ effects should cancel with a joint SBND/ICARUS spectra analysis Current estimates are flux $\sim 10\%$ / cross section $\sim 15\%$ / detector effects $\sim 15\%$

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

• Φ, σ and (conservative) detector systematic uncertainties included (~equal): Momentum in the transver plane

ν_{μ} DISAPPEARANCE ANALYSIS: PRELIMINARY RESULTS

- Pandora-based analysis on BNB ν beam ~50% signal efficiency, 80% signal purity 1.93 x 10¹⁹ Proton on Target (PoT) **34000 events** (Run I - 3)
- **SPINE**-based analysis on BNB u beam ~75% signal efficiency, 80% purity 1.92 x 10¹⁹ PoT **47000 events** (Run 1-3)

We are ready for the next analysis steps:

- enlarge the control sample to • confirm the robustness of the analysis
- proceed to full data unblinding and oscillation fit

NUMI 1 μ Np 0 π ANALYSIS

- Huge statistics to measure quasi-elastic (QE), resonance and deep inelastic scattering ν_{μ} , ν_{e} cross sections CC events/6 x 10²⁰ PoT: 332 000 ν_{μ} , 17000 ν_{e} - 3.42 x 10²⁰ PoT already available for the present analysis
- First oscillation peak & relevant phase space for DUNE is covered by NuMI energy spectrum @ ICARUS

- First analysis targets lµNp0π <u>enhanced</u> in QE and 2p2h interactions
- Event selection, relevant variables, including systematics and control sample in the next slide

NUMI 1 μ Np 0 π ANALYSIS

- Signal: no π/γ , at least 1 µ with p>226 MeV/c and proton(s) with $p \in [0.4, 1]$ GeV/c identified w/ PID $\cos \theta_{\mu,p}$ should encode all info about **Final State Interactions**, transverse kinematic variables are relevant
- Systematics: flux, interaction model and detector systematic uncertainties (same as BNB) included
- Major background: events with undetected or misidentified **pions**
- Control sample w/ π^{\pm} and secondary μ -like track
- First study using 15% of the data

We are ready to study the sidebands with the full Run I & Run 2 event statistics

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

BEYOND STANDARD MODEL PHYSICS PROGRAM

- Rich BSM search program (dark matter, heavy neutrial leptons, ...) based on the off-axis NuMI beam
- Models explored so far feature dark particles coupling to SM particles via Scalar Portal Interactions
 - Higgs Portal Scalar: scalar dark particles, interacting with SM particles with Higgs boson mixing
 - Heavy QCD axion: pseudo-scalar particles, interacting with SM ones via pseudo-scalar mesons
- First search for BSM particle decaying into **di-muon** just **completed**
 - Event selection: 2 stopping µ-like particles (fully contained) with resolvable mass peak, proxy of the scalar particle mass
 - Signal peak expected at small angles wrt beam ($\theta_{NuMI} < 5^\circ$)
 - All systematics (flux, cross section and detector) included

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

Typical signal candidate

DI-LEPTON ANALYSIS

- Data unblinding: 8 events vs 8 events expected mostly from $\nu_{\mu}CC$ coherent π production in the null hypothesis
- No evidence of a new signal: maximum excess is 0.19σ

First results from ICARUS at the Short-Baseline Neutrino program, Alice Campani

CONCLUSIONS AND NEXT STEPS

- ICARUS is **running stably** and acquiring physics runs since summer 2022, esposed to both on-axis BNB (ν -mode) and off-axis NuMI (ν - and $\bar{\nu}$ -mode) neutrino beams
- Accurate detector calibration and response modelling (electronic and calorimetric) extracted exploiting cosmic μ s and protons from ν interactions and now fully embedded in our simulations
- Both waiting and in view of the upcoming joint-SBN analyses, several single detector studies are progressing and **quite advanced**:
 - ν_{μ} disappearance channel with BNB beam \rightarrow control sample will be enlarged to complete validation •
 - ν -Ar cross section measurements with NuMI beam, first selection includes 1µNp0 π events \rightarrow ready to study the sidebands with the full statistics available
 - Search for sub-GeV dark matter particles with NuMI beam data
 - Search for *di-muon* final state topology available \rightarrow first results available: analysis completed
- Interesting results are foreseen soon (ν_{ρ} analyses on BNB, NuMI data are starting) so stay tuned!

THANKS FOR YOUR ATTENTION

