Status of JUNO Experiment

On behalf of the JUNO collaboration

Matthieu LECOCQ

lecocq@lp2ib.in2p3.fr

The JUNO collaboration

Collaboration was established in 2014.

We have now more than 700 collaborators from 74 institutions in 17 countries/region

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China 🔄	Tsinghua U.	Germany	U. Tuebingen
Brazil	PUC	China 🍼	UCAS	Italy	INFN Catania
Brazil	UEL	China 🛸	USTC	Italy	INFN di Frascati
Chile	PCUC	China	U. of South China	Italy	INFN-Ferrara
Chile 🐪	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China 📋	Xiamen University	Italy	INFN-Perugia
China	CAGS	China 🧹	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China 🚽 🔶	NUDT	Pakistan	PINSTECH (PAEC)
China	CIAE	China	CUG-Beijing	Russia	INR Moscow
China	DGUT	China	ECUT-Nanchang City	Russia	JINR
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Warwick
China	Shandong U.	Germany	TUM	USA	UMD-G
China	Shanghai JT U.	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Beijing	Germany	FZJ-IKP		

CERN recognised experiment with our first JUNO European + American collaboration meeting at CERN

The Jiangmen Underground Neutrino Observatory

JUNO is a state-of-the-art neutrino detector located in Jiangmen, China:

- Its position has been optimised to probe the Neutrino Mass Ordering (NMO)
- The main sources of (anti)neutrinos are 2 reactor power plants located exactly at 52.5 km from the detector

- Distance requires large enough mass (20kt liquid scintillator target)
- Unprecedented energy resolution (3% at 1 MeV) to seperate mass orederings

NMO) d exactly at 52.5 km from the detector

JUNO Detector Design

Calibration room

multi-dimension calibration systems

Top Tracker 3 layers of plastic scintillators strips (cover ~50% of Water Pool)

Water Pool (WP)

35 kt pure water ~2000 20" MCP PMT Muon and external radioactivity veto

Central Detector (CD) Stainless Stell Structure (SSS)

Acrylic Sphere

Liquid Scintillator (LS)

High light yield: 1665 PE/MeV High transparency: ~20 m attenuation length at 430 nm

PhotoMultipliers (PMTs)

17612 20" PMTs (LPMTs) 25600 3" PMTs (SPMTs) ~78% Photo coverage

Acrylic Vessel

Filled with 20 kt of LS 96% transparency High radiopurity

Acrylic Nodes

Connecting bars to the SS structure to support the acrylic

Central Detector Construction

The Central Detector is made of the Acrylic vessel containing the LS and the SS structure supporting the acrylic

Acrylic panels production:

- **265 pieces** of spherical panels
- Thickness of 12 cm and net weight of ~600 tons

Acrylic requirements:

- Transparency of >96%
- Radiopurity U/Th/K < 1ppt

Cleaning

50um PE protection film

Acrylic construction is completed

Defects were repaired

Last SS bars connecting acrylic to SS structure to be installed

View of the Acrylic vessel from the bottom of the water pool

Last 2 layers in positionning

Liquid Scintillator and OSIRIS

- Liquid Scintillator recipe: LAB (solvant) + 2.5 g/L PPO (fluor) + 3 mg/L bis-MSB (wavelength shifter)
- Before filling, the LS undergoes purification processes to enhance optical properties and remove radioactivity contaminants

4 purification steps

- Al₂O₃ filtration column (optical properties improvement)
- Distillation tower (remove heavy element and improve transparency)
- Water extraction (remove U/Th/K isotopes)
- Steam or Nitrogen stripping (remove gaseous impurities from Ar/Kr/Rn)

OSIRIS

Online Scintillator Internal Radioactivity Investigation System

1) 102	Requirements	238U	²³² Th	²²⁶ Ra	⁴⁰ K	²¹⁰ Pb(²²² Rn)	⁸⁵ Kr / ³⁹ Ar	
11 (202	Reactor physics	10 ⁻¹⁵ g/g	10 ⁻¹⁵ g/g		10 ⁻¹⁶ g/g	10 ⁻²² g/g		\checkmark
JHEP	Solar physics	10 ⁻¹⁷ g/g	10 ⁻¹⁷ g/g	5·10 ⁻²⁴ g/g	10 ⁻¹⁸ g/g	10 ⁻²⁴ g/g	1µBq/m³	$\overline{\mathbb{Z}}$

OSIRIS

• 17t liquid scintillator detector to monitor radiopurity levels of LS • 3x3 m acrylic vessel surrounded by 76 MCP–PMTs + 3m of water shielding • U/Th tagging by searching for Bi-Po coincidence

Photomultipliers system

• To ensure high photo statistics and reach required energy resolution, JUNO is equipped with 2 PMT systems

• MCP PMTs are more suited for energy measurements and dynode PMTs are crucial for tracking and vertex reconstruction

	20" PMTs	3" PMTs (SPMT)	
	5000	12612	25600
	Hamamatsu (JP)	NNVT (CN)	HZC (CN)
า	Dynode	Micro-channel plate	Dynode
	1.3 ns	7.0 ns	1.5 ns
		1665 p.e/MeV	
	~ 75	~ 3%	
	arXiv:240	NIM.A 1005 (2021) 165347	

• MCP PMTs have better PDE than Hamamatsu dynode PMTs

Photomultipliers system commissioning

- Regular light-off tests during detector assembly:
 - Light off tests: full data taking and processing chain with PMT HV on
 - Light on tests: joint elec./trigger/DAQ/DCS test with PMT HV off
- Very good electronics, shielding and grounding
- All tested PMTs were working well

Photomultiplier tubes installation

The PMTs installation follows closely the acrylic construction

As of September 2024:

- 14866 LPMTs installed (~84% of 17612)
- 22207 SPMTs installed (~87% of 25600)

Electronics installation:

- Under Water Boxes (UWB) containing the electronics have been installed (85%)
- Some channels in UWB located in upper layers have electronics noises and are under investigation

Energy Scale calibration

composed by four systems exploiting y, β and neutron sources:

- Automatic Calibration Unit (ACU): 1D along the vertical axis (Scan central axis)
- Cable Loop System (CLS): 2D plane inside the acrylic vessel (Scan CD vertical plane)
- Guide Tube (GT): 2D plane outside acrylic vessel (Scan CD outer surface)
- **Remotely Operated Vehicle (ROV)**: 3D anywhere inside the detector

A systematic error of less than 1% is obtained by the means of the calibration system

Signal and Background in JUNO

Efficiency (%)	IBD Rate (day^{-1})
100.0	57.4
91.5	52.5
98.1	51.5
99.8	-
99.0	-
99.2	-
91.6	47.1
82.2	47.1
	Efficiency (%) 100.0 91.5 98.1 99.8 99.0 99.2 91.6 82.2

CPC 46 (2022) 12, 123001

Background	Rate (day^{-1})
Geoneutrinos	1.2
World reactors	1.0
Accidentals	0.8
$^9\mathrm{Li}/^8\mathrm{He}$	0.8
Atmospheric neutrinos	0.16
Fast neutrons	0.1
$^{13}\mathrm{C}(lpha,\mathrm{n})^{16}\mathrm{O}$	0.05
Total background	4.11

Veto Design and Installation

- 650m overburden corresponding to 1800 m.w.e
- Water pool (WP):
 - 35 kton of ultrapure water and 2400 MCP-PMTs are used to form the Water Cherenkov Detector (~50% of PMTs have been installed)
 - Water pool lining: 5mm of HDPE to serve as Rn barrier and keep the water clean
 - 100t/h ultrapure water production system:
 - Rn < 10mBq/m^3
 - temperature controlled to $(21 \pm 1 \,^{\circ}\text{C})$
- TopTracker (TT):
 - Reusing **plastic scintillator from OPERA** Target Tracker
 - ~ 50% coverage on the top. Three layers to reduce accidental coincidence
 - Control muon samples to validate track reconstruction and study cosmogenic backgrounds
 - Bridge has been assembled and installation is on-going

JUNO-TAO

Taishan Antineutrino Observatory (TAO) is a high energy resolution LS detector located at 30m from one of Taishan's reactor cores ($4.6 \text{ GW}_{\text{th}}$).

This satellite detector will measure the fine structure of the reactor neutrino spectrum and eliminate the model **dependence** of JUNO Neutrino Mass Ordering (NMO).

Detector Design

- 2.8t of Gd-doped LS in an acrylic vessel
- Water Cherenkov veto + plastic scintillator (PS) tagger
- Working temperature: -50°C
- Covered with SiPM tiles (PDE ~50%) for ~94% coverage
- 4500 p.e/MeV corresponding to 2% energy resolution at 1 MeV

JUNO Physics reach

- sub-% precision

- JUNO aims toward determining the mass ordering with over 3σ significance level after 6.7 years of data taking.
- A 5 σ significance level could be reached by accounting for external constraints from long-baseline experiments

JUNO Physics reach

JUNO is sensitive to a large panel of neutrino sources that makes it a multi-purpose Neutrino Observatory

Less than 100 evts/day

Proton decays: $p
ightarrow ar{
u} + K^+$ Lifetime: 10^{34} years

Summary and Conclusion

- JUNO is a state-of-the-art reactor neutrino detector with the largest mass ever built (20 kt of LS) and an unmatched energy resolution (3% @ 1 MeV)
- JUNO's construction is still ongoing but very close to completion
- Components quality exceed the predicted design and may increase the performance
- Filling and start of data taking is scheduled for 2025
- The satellite detector TAO will increase our knowledge of the reactor neutrino flux
- Neutrino mass ordering measurement will be obtained in 6 years x 26.6 GWth with:
 - \circ ~3 σ with reactor neutrinos only
 - ~5σ by accounting for long baseline experiments constraints
- Sub-percent measurement of other parameters of the PMNS matrix (Δm_{31}^2 , Δm_{21}^2 , $\sin^2 \theta_{12}$)
- JUNO also has a large panel of astrophysics program

	BACK UP
) • • • • • • • • • • • • • • • • • • •	
) • • • • • • • • • • • • • • • • • • •	
) • • • • • • • • • • • • • • • • • • •	
) • • • • • • • • • • • • • • • • • • •	
)	

Neutrino Oscillation

PMNS mixing matrix links neutrino flavour eigenstates with their mass eigenstates:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \qquad \begin{array}{l} s_{ij} = \sin(\theta_{ij}) \\ c_{ij} = \cos(\theta_{ij}) \\ \delta = phase \ CP \\ \xi_{ij} = Majorana \ phase \end{array}$$
$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} e^{i\xi_{1}/2} & 0 & 0 \\ 0 & e^{i\xi_{2}/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Most of the parameters have been measured with a precision > 1%

PDG 2022

	Ref. [188] w/o SK-ATM			
NO	Best Fit Ordering			
Param	bfp $\pm 1\sigma$	3σ range		
$\frac{\sin^2 \theta_{12}}{10^{-1}}$	$3.10\substack{+0.13 \\ -0.12}$	$2.75 \rightarrow 3.50$		
$\theta_{12}/^{\circ}$	$33.82\substack{+0.78 \\ -0.76}$	$31.61 \rightarrow 36.27$		
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.58\substack{+0.20 \\ -0.33}$	$4.27 \rightarrow 6.09$		
$\theta_{23}/^{\circ}$	$48.3^{+1.2}_{-1.9}$	$40.8 \rightarrow 51.3$		
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.241\substack{+0.066\\-0.065}$	$2.046 \rightarrow 2.440$		
$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$		
$\delta_{ m CP}/^{\circ}$	222^{+38}_{-28}	$141 \rightarrow 370$		
$rac{arDelta m_{21}^2}{10^{-5}~{ m eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$		
$rac{\Delta m^2_{32}}{10^{-3}~{ m eV^2}}$	$2.449\substack{+0.032\\-0.030}$	$2.358 \rightarrow 2.544$		

Mass hierarchy determination using reactors neutrinos

- Nuclear reactors are an intense source of anti-neutrinos
- They come from beta-fission fragments from the fission of U and Pu isotopes
- For 1 GW reactor (thermal power) we expect $2 imes 10^{20}
 u/s$ emitted in 4π solid angle

• Reactor anti-neutrinos are detected via **Inverse Beta Decay (IBD)**:

$$ar{
u}_e + p o e^+ + n$$

- The signal signature is given by the coincidence between: • **Prompt** photons from **e+** ionisation and annihilation (1–8 MeV) • **Delayed** photon from **n** capture on H (2.2 MeV)
 - Time correlation τ = 200µs

• Only the disappearance is observable using reactor anti-neutrinos where the oscillation do not rely on δ_{CP} and $heta_{23}$

Mass hierarchy determination using reactor neutrinos

The survival probability of electronic anti-neutrinos is given by:

$$\begin{aligned} 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (\Delta_{21}) \\ - \sin^2 2\theta_{13} \sin^2 (|\Delta_{31}|) \\ - \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 (\Delta_{21}) \cos (2|\Delta_{31}|) \\ & \textcircled{\pm} \frac{\sin^2 \theta_{12}}{2} \sin^2 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|) , \\ & \underbrace{\frac{\Delta m_{ij}^2 L}{4E_{\nu}}}, \quad (\Delta m_{ij}^2 \equiv m_i^2 - m_j^2) \end{aligned}$$

• Several conditions on baseline and energy resolution are required to

- With a high energy resolution it is possible to see the oscillation dominated by

Energy Scale calibration

Table 7: The envisioned calibration program				
Program	Purpose	System	Duration [min]	
Weekly selibration	Neutron (Am-C)	ACU	63	
weekly calibration	Laser	ACU	78	
	Neutron (Am-C)	ACU	120	
Monthly colibration	Laser	ACU	147	
Montilly calibration	Neutron (Am-C)	CLS	333	
	Neutron (Am-C)	GT	73	
	Neutron (Am-C)	ACU, CLS and GT	1942	
	Neutron (Am-Be)	ACU	75	
	Laser	ACU	391	
Comprehensive colibration	$^{68}\mathrm{Ge}$	ACU	75	
Comprehensive cambration	^{137}Cs	ACU	75	
	$^{54}\mathrm{Mn}$	ACU	75	
	60 Co	ACU	75	
	^{40}K	ACU	158	

Table 6: The radioactive sources and radiation types	Table 6:	The	radioactive	sources	and	radiation	types	
--	----------	-----	-------------	---------	-----	-----------	-------	--

Source	Type	Radiation
^{137}Cs	γ	$0.662 { m MeV}$
^{54}Mn	γ	$0.835 { m MeV}$
60 Co	γ	1.173 + 1.333 MeV
^{40}K	γ	$1.461 { m MeV}$
$^{68}\mathrm{Ge}$	e^+	annihilation $0.511 + 0.511$ MeV
241 Am-Be	n, γ	neutron + 4.43 MeV $(^{12}C^*)$
241 Am- 13 C	n, γ	neutron + 6.13 MeV ($^{16}O^*$)
$(\mathrm{n},\gamma)\mathrm{p}$	γ	2.22 MeV
$(\mathbf{n},\gamma)^{12}\mathbf{C}$	γ	4.94 MeV or 3.68 + 1.26 MeV

Atmospheric neutrinos

- JUNO design allows good separation between u_e / u_μ
- Good capabilities to measure atmospheric neutrino flux
- Help constrain discrepancies between models
- Matter effect acting for neutrinos crossing the Earth provides a complementary measurement of neutrino mass ordering

J.Phys.G 43 (2016) 3, 030401

Φ [GeV cm⁻² s⁻¹ sr¹]

N

10

Eur.Phys.J.C 81 (2021) 10

~1 σ NMO sensitivity reachable in ~2 years using atm. neutrinos only

Solar and Geo Neutrinos

- Solar neutrinos studies are highly dependent on radiopurity levels
- In all radiopurity scenarios, JUNO will be able to reduce Borexino uncertainty
- Shed light on Δm^2_{12} and $heta_{12}$ tension between solar and reactor neutrinos measurement

- Borexino ~17%)
- Geonetrinos are detected by IBD (threshold of 1.8 MeV)
- Main background are reactor neutrinos

Matthieu Lecocq

• Largest dataset of geo-neutrinos ever measured (~400 evts/year) • Total precision ~8% in 10 years with Th/U ratio fixed (KamLAND ~15%,

Supernova Neutrinos

Core-Collapse Supernova

- SN emits 99% of their energy in the form of neutrinos and antineutrinos
- 3 main detection channels sensitive to all flavors
- Expected SN rates at 10kpc : 5000 snIBD, 2000 pES, 300 eES

Diffuse Supernova Background (DSNB)

- Many backgrounds: dominance from NC atm. neutrinos interaction with ¹²C nuclei (more than one order magnitude over DSNB)
- Good background rejection expected
- 3σ significance after 3 years and 5σ significance after 10 years

