lecocq@lp2ib.in2p3.fr

Matthieu LECOCQ

Status of JUNO Experiment

On behalf of the JUNO collaboration

The JUNO collaboration

Collaboration was established in 2014.

We have now more than 700 collaborators from 74 institutions in 17 countries/region

CERN recognised experiment with our first JUNO European + American collaboration meeting at CERN

The **J**iangmen **U**nderground **N**eutrino **O**bservatory

JUNO is a state-of-the-art neutrino detector located in Jiangmen, China:

- Its position has been optimised to probe the Neutrino Mass Ordering (NMO)
- The main sources of (anti)neutrinos are 2 reactor power plants located exactly at 52.5 km from the detector

- Distance requires large enough mass (**20kt liquid scintillator target**)
- **Unprecedented energy resolution** (3% at 1 MeV) to seperate mass orederings

Central Detector (CD) Stainless Stell Structure (SSS)

Acrylic Sphere

Liquid Scintillator (LS)

High light yield: 1665 PE/MeV High transparency: ~20 m attenuation length at 430 nm

Calibration room

multi-dimension calibration systems

Top Tracker 3 layers of plastic scintillators strips (cover ~50% of Water Pool)

Water Pool (WP)

35 kt pure water ~2000 20" MCP PMT Muon and external radioactivity veto

PhotoMultipliers (PMTs)

17612 20" PMTs (LPMTs) 25600 3" PMTs (SPMTs) ~78% Photo coverage

Acrylic Vessel

Filled with 20 kt of LS 96% transparency High radiopurity

Acrylic Nodes

Connecting bars to the SS structure to support the acrylic

JUNO Detector Design

The Central Detector is made of the Acrylic vessel containing the LS and the SS structure supporting the acrylic

- T**ransparency of >96%**
- Radiopurity U/Th/K < 1ppt

Acrylic panels production:

Polishing **Cleaning** 50um PE protection film

- **265 pieces** of spherical panels
- Thickness of 12 cm and net weight of **~600 tons**

Acrylic requirements:

View of the Acrylic vessel from the bottom of the water pool

Central Detector Construction

Acrylic construction is completed

Defects were repaired

Last SS bars connecting acrylic to SS structure to be installed

Last 2 layers in positionning

Liquid Scintillator and OSIRIS

- Liquid Scintillator recipe: LAB (*solvant*) + 2.5 g/L PPO (*fluor*) + 3 mg/L bis-MSB (*wavelength shifter)*
- Before filling, the LS undergoes purification processes to enhance optical properties and remove radioactivity contaminants

- Al₂O₃ filtration column (optical properties improvement)
- Distillation tower (*remove heavy element and improve transparency)*
- Water extraction (*remove U/Th/K isotopes)*
- Steam or Nitrogen stripping *(remove gaseous impurities from Ar/Kr/Rn)*

50 nm filter LAB Ground tank Underground $J< 0.19$ ppq $Th < 0.15$ ppg

4 purification steps

OSIRIS

Online Scintillator Internal Radioactivity Investigation System

-
-
-

OSIRIS

17t liquid scintillator detector to monitor radiopurity levels of LS 3x3 m acrylic vessel surrounded by 76 MCP-PMTs + 3m of water shielding U/Th tagging by searching for Bi-Po coincidence

Photomultipliers system

• MCP PMTs have better PDE than Hamamatsu dynode PMTs

To ensure high photo statistics and reach required energy resolution, JUNO is equipped with 2 PMT systems

MCP PMTs are more suited for energy measurements and dynode PMTs are crucial for tracking and vertex reconstruction

Photomultipliers system commissioning

- Regular light-off tests during detector assembly:
	- o Light off tests: full data taking and processing chain with PMT HV on
	- o Light on tests: joint elec./trigger/DAQ/DCS test with PMT HV off
- Very good electronics, shielding and grounding
- All tested PMTs were working well

Photomultiplier tubes installation

The PMTs installation follows closely the acrylic construction

As of September 2024:

- 14866 LPMTs installed (**~84%** of 17612)
- 22207 SPMTs installed (**~87%** of 25600)

Electronics installation:

- Under Water Boxes (UWB) containing the electronics have been installed (**85%**)
- Some channels in UWB located in upper layers have electronics noises and are under investigation

A systematic error of less than 1% is obtained by the means of the calibration system

composed by four systems exploiting γ , β and neutron sources:

- **Automatic Calibration Unit (ACU)**: 1D along the vertical axis (*Scan central axis)*
- **Cable Loop System (CLS)**: 2D plane inside the acrylic vessel (*Scan CD vertical plane)*
- **Guide Tube (GT):** 2D plane outside acrylic vessel (*Scan CD outer surface)*
- *Remotely Operated Vehicle (ROV): 3D anywhere inside the detector*

Energy Scale calibration

Signal and Background in JUNO

CPC 46 (2022) 12, 123001

Veto Design and Installation

- 650m overburden corresponding to 1800 m.w.e
- Water pool (WP):
	- 35 kton of ultrapure water and 2400 MCP-PMTs are used to form the Water Cherenkov Detector (~50% of PMTs have been installed)
	- Water pool lining: 5mm of HDPE to serve as Rn barrier and keep the water clean
	- 100t/h ultrapure water production system:
		- $\mathsf{Rn} \triangleleft \mathsf{10mBq/m}^3$
		- **temperature controlled to (21** \pm **1 °C)**
- TopTracker (TT):
	- Reusing **plastic scintillator from OPERA** Target Tracker
	- \circ ~ 50% coverage on the top. Three layers to reduce accidental coincidence
	- Control muon samples to validate track reconstruction and study cosmogenic backgrounds
	- o Bridge has been assembled and installation is on-going

JUNO-TAO

Taishan **A**ntineutrino **O**bservatory (TAO) is a high energy resolution LS detector located at 30m from one of Taishan's reactor $\sf cores$ (4.6 GW $_{\sf th}$).

This satellite detector will measure the fine structure of the reactor neutrino spectrum and **eliminate the model dependence** of JUNO Neutrino Mass Ordering (NMO).

Detector Design

- 2.8t of Gd-doped LS in an acrylic vessel
- Water Cherenkov veto + plastic scintillator (PS) tagger
- Working temperature: -50°C
- Covered with SiPM tiles (PDE ~50%) for ~94% coverage
- 4500 p.e/MeV corresponding to 2% energy resolution at 1 MeV

JUNO Physics reach

-
-

- JUNO aims toward determining the mass ordering with over 3σ significance level after 6.7 years of data taking.
- A 5σ significance level could be reached by accounting for external constraints from long-baseline experiments

JUNO Physics reach

JUNO is sensitive to a large panel of neutrino sources that makes it a multi-purpose Neutrino Observatory

Less than 100 evts/day

Proton decays: $p \rightarrow \bar{\nu} + K^+$ Lifetime: 10^{34} years

Summary and Conclusion

- **JUNO is a state-of-the-art reactor neutrino detector with the largest mass ever built (20 kt of LS) and an unmatched energy resolution (3% @ 1 MeV)**
- **JUNO's construction is still ongoing but very close to completion**
- **Components quality exceed the predicted design and may increase the performance**
- **Filling and start of data taking is scheduled for 2025**
- **The satellite detector TAO will increase our knowledge of the reactor neutrino flux**
- **Neutrino mass ordering measurement will be obtained in 6 years x 26.6 GWth with:**
	- **~3σ with reactor neutrinos only**
	- **~5σ by accounting for long baseline experiments constraints**
- Sub-percent measurement of other parameters of the PMNS matrix (Δm_{31}^- , Δm_{21}^- , sin θ_{12}^-)
- **JUNO also has a large panel of astrophysics program**
-
- **2 2 2**

Neutrino Oscillation

PMNS mixing matrix links neutrino flavour eigenstates with their mass eigenstates:

$$
\begin{pmatrix}\n\nu_e \\
\nu_\mu \\
\nu_\tau\n\end{pmatrix} = \begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\begin{pmatrix}\n\nu_1 \\
\nu_2 \\
\nu_3\n\end{pmatrix}\n\begin{pmatrix}\ns_{ij} = \sin(\theta_{ij}) & n_{ij} = (1, 2, 3) \\
c_{ij} = \cos(\theta_{ij}) & n_{ij} = (1, 2, 3) \\
\delta = \text{phase } CP & \xi_{ij} = \text{Majorana phase}\n\end{pmatrix}
$$
\n
$$
U = \begin{bmatrix}\n1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}\n\end{bmatrix} \times \begin{bmatrix}\nc_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{-i\delta} & 0 & c_{13}\n\end{bmatrix} \times \begin{bmatrix}\nc_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1\n\end{bmatrix} \times \begin{bmatrix}\ne^{i\xi_1/2} & 0 & 0 \\
0 & e^{i\xi_2/2} & 0 \\
0 & 0 & 1\n\end{bmatrix}
$$

Most of the parameters have been measured with a precision > 1%

PDG [2022](https://pdg.lbl.gov/2020/reviews/rpp2020-rev-neutrino-mixing.pdf)

Mass hierarchy determination using reactors neutrinos

- Nuclear reactors are an intense source of anti-neutrinos
- They come from beta-fission fragments from the fission of U and Pu isotopes
- For 1 GW reactor (thermal power) we expect $2\times 10^{20}\nu/s\,$ emitted in 4π solid angle

-
-

Reactor anti-neutrinos are detected via **Inverse Beta Decay (IBD):**

$$
\boxed{\bar{\nu}_e + p \rightarrow e^+ + n}
$$

- The signal signature is given by the coincidence between:
	- **Prompt** photons from **e+** ionisation and annihilation (1-8 MeV)
	- **Delayed** photon from **n** capture on H (2.2 MeV)
	- **Time correlation** = 200μs

• Only the disappearance is observable using reactor anti-neutrinos where the oscillation do not rely on δ_{CP} and θ_{23}

Mass hierarchy determination using reactor neutrinos

The survival probability of electronic anti-neutrinos is given by:

$$
1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21})
$$

- $\sin^{2} 2\theta_{13} \sin^{2} (|\Delta_{31}|)$
- $\sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{21}) \cos (2|\Delta_{31}|)$
 $\frac{\sin^{2} \theta_{12}}{2} \sin^{2} 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|)$,
 $\frac{\Delta m_{ij}^{2} L}{4E_{\nu}}$, $(\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2})$

Several **conditions on baseline and energy resolution** are required to

-
-
- With a high energy resolution it is possible to see the oscillation dominated by

Energy Scale calibration

JHEP 03 (2021) 004

- JUNO design allows good separation between ν_e / ν_{μ}
- Good capabilities to measure atmospheric neutrino flux
- Help constrain discrepancies between models
- Matter effect acting for neutrinos crossing the Earth provides a complementary measurement of neutrino mass ordering

~1 σ NMO sensitivity reachable in ~2 years using atm. neutrinos only

Atmospheric neutrinos

Eur.Phys.J.C 81 (2021) 10

⊅[GeV cm⁻² s⁻¹ sr

 $\frac{N}{111}$ 10⁻¹

J.Phys.G 43 (2016) 3, 030401

Solar and Geo Neutrinos

- Solar neutrinos studies are highly dependent on radiopurity levels
- In all radiopurity scenarios, JUNO will be able to reduce Borexino uncertainty
- Shed light on Δm^2_{12} and θ_{12} tension between solar and reactor neutrinos measurement

-
- Borexino ~17%)
- Geonetrinos are detected by IBD (threshold of 1.8 MeV)
- Main background are reactor neutrinos

- Borexino Phase-III (U-Th 10^{-19} g/g)

Largest dataset of geo-neutrinos ever measured (~400 evts/year) Total precision ~8% in 10 years with Th/U ratio fixed (KamLAND ~15%,

Supernova Neutrinos

Core-Collapse Supernova

- SN emits 99% of their energy in the form of neutrinos and antineutrinos
- 3 main detection channels sensitive to **all flavors**
- Expected SN rates at 10kpc : 5000 *sn*IBD, 2000 pES, 300 eES

- Many backgrounds: dominance from NC atm. neutrinos interaction with 12 C nuclei (more than one order magnitude over DSNB)
- Good background rejection expected
- 3 σ significance after 3 years and 5 σ significance after 10 years

Diffuse Supernova Background (DSNB)

