NA61/SHINE: Hadron production for neutrino beams

35e Rencontres de BloisE. D. ZimmermanBlois, Val de Loire, FranceUniversity of Colorado, Boulder22 Octobre 2024

In the conference office...

Proceedings of the XXIIIrd RENCONTRES DE BLOIS Château de Blois, Loire Valley, France May 29 - June 3, 2011

> PARTICLE PHYSICS AND COSMOLOGY 2011

> > EDITED BY

Ludwik Celnikier Jacques Dumarchez Boaz Klima and

Jean Trần Thanh Vân

• THẾ GIỚI PUBLISHERS

NA61/SHINE Neutrino Program

- Neutrino beam physics: why measure hadron production?
- NA61/SHINE neutrino program
- Current and new results
- New data sets
- New opportunities

Flux from a neutrino beam

• Neutrino flux comes from:

- Pions, kaons produced directly from primary p+C interactions
- Also produced from re-interactions of secondary p,π in the target
- Secondary particles from target focused in a series of horns
 - Horns contain substantial amounts of aluminum, which also acts as a secondary target
- All of these sources of mesons contribute significantly to the neutrino flux.

Understanding the flux

- Use Monte Carlo techniques to simulate the beam, but this is generally a very complicated and challenging environment. Uncertainties can be large: 20-50% with standard simulation tools.
- Monte Carlo must simulate:
 - Interaction of proton in target
 - Production of pions, kaons in target
 - Propagation of particles through horn (scattering, interactions, field)
 - Propagation through decay volume and loss in beam absorber
 - Meson decays to neutrinos, muons

All of these require knowing hadron interaction physics!

Primary beam energies for current and near future neutrino beams

T2K, T2HK: 31 GeV/c p

BNB: 8.9 GeV/c p

LBNF/DUNE: 60-120 GeV/c p

NuMI: 120 GeV/c p

Understanding a neutrino beam

- Two complementary techniques needed to understand the beam well enough to do oscillation measurements
 - Secondary muon monitors for indirect monitoring of pion decays
 - Near neutrino detector
 - Goal is cancellation of flux uncertainties in near/far ratio.
 - Not perfect for constraining flux, due to neutrino cross-section (don't cancel if detectors are different), acceptance/reconstruction differences, and parallax effects due to being near an extended neutrino source
 - Measurement of pion, kaon production and interactions
 - Essential for measuring neutrino interaction cross-sections
 - Reduces oscillation systematic errors

Dedicated experiments

- In recent years, a loose program of hadron production measurements specifically for neutrino experiments has been underway
- HARP (CERN PS)
- EMPHATIC (FNAL MI)
- NA61/SHINE (CERN SPS)

NA61: The SPS Heavy Ion and Neutrino Experiment

11

- Fixed-target experiment using H2 beam at CERN SPS
- ~150 collaborators
- Designed around the former NA49 heavy-ion spectrometer
- Primary proton beam from CERN SPS, Secondary beams ~25 to 350 GeV/c

NA61: The SPS Heavy Ion and Neutrino Experiment

Diverse physics program includes Strong interactions/heavy ion physics Onset of QCD deconfinement Search for critical point Open-charm production

Cosmic ray interaction studies

Hadron production ... for neutrino beams Hadron production for air-shower model predictions d/d production for AMS experiment Nuclear fragmentation cross-sections

- Beam instrumentation:
 - Scintillators serve as initial trigger and detector timing signal, veto halo particles

- Beam instrumentation:
 - CEDAR, THC (Threshold Cherenkov) identify beam particles with high accuracy

- Beam instrumentation:
 - Beam Position Detectors (BPDs) are MWPC-based tracking detectors that measure transverse position of each beam particle

- Beam instrumentation:
 - Additional scintillator S4 in magnetic field can veto beam-momentum forward particles (non-interaction events)

- Several large-acceptance TPCs provide charged-particle tracking and measure dE/dx.
- VTPC-1 and VTPC-2 sit inside superconducting analysis magnets for momentum measurement

Scintillator and multilayer resistive plate chamber (MRPC) time-of-flight detectors

 Projectile Spectator Detector: forward hadron calorimeter (not used much for neutrino measurements)

Particle identification

NA61/SHINE operational eras

- Multi-phase program of hadron production measurements dedicated for neutrino physics
- Major upgrades during each Long Shutdown
- Plans continue to evolve for future upgrades and operations

Twin approaches: thin- and replica-target measurements

- Need thin-target measurements to measure physics cross-sections (total inelastic and production cross-sections, and differential spectra), for inputs to generators
- Graphite thin target (1.5 cm, 3.1% of λ_{I}) Ne

- Need measurements on replica (~meter-long) targets of same material and geometry as neutrino production targets.
 - Measure both beam survival probability and differential yields.
 - Make measurements specifically for each neutrino beam.
 - Usually use results to re-weight particles in beam MC at surface of target

NA61/SHINE measurements for T2K

- NA61/SHINE took thin- and thick- target data with 30 GeV/c protons specifically for T2K in **2007 (thin) 2009 (thin and replica)**, and **2010 (replica)**.
- Eight NA61/SHINE publications have come out of these data sets

THIN TARGET		
Total xsec, pion spectra	Phys. Rev. C84 034604 (2011)	
K+ spectra	Phys. Rev. C85 035210 (2012)	
K^{0}_{S} and Λ^{0} spectra	Phys. Rev. C89 025205 (2014)	
$\pi^{\pm}, K^{\pm}, p, K^{0}_{S}, \Lambda^{0}$ spectra	Eur. Phys. J. C76 84 (2016)	

T2K REPLICA TARGET		
methodology, π^\pm yield	Nucl. Instrum. Meth. A701 99-114 (2013)	
π^{\pm} yield	Eur. Phys. J. C76 617 (2016)	
π^{\pm} , K^{\pm} , p yield	Eur. Phys. J. C79 100 (2019)	
<i>p</i> beam survival probability	Phys. Rev. D103 012006 (2021)	

NA61 result: full differential yields from T2K replica target

- Eur.Phys.J. C 79
 2,100 (2019)
- Showing one angle bin of π⁺ for illustration.
 Also have π⁻, K[±], p yields

NA61/SHINE measurements for T2K

- Steady improvements to the T2K flux prediction (described in Phys.Rev. D87 (2013) no.1, 012001 and J.Phys.Conf.Ser. 888 (2017) no.1, 012064) as more NA61 data sets have been incorporated:
 - first thin-target
 - 2009 replica
 - 2010 replica data set (which added statistics and included kaon yields)

2015-18: A second phase of NA61 neutrino measurements

- Motivation: new coverage will be needed for DUNE, can help existing experiments as well in shorter term
- Project made specific upgrades:
 - Forward tracking system filled hole in zero-angle acceptance
 - New tandem TPC concept for rejecting out-of-time tracks: JINST 15 (07), P07013
 - New readout electronics for timeof-flight detector
- Data collected in 2015-18 for this program

Event display

NA61 2016-17 neutrino data Thin targets

2016	2017
p + C @ 120 GeV/c	π+ + Al @ 60GeV/c
p + Be @ 120 GeV/c	π+ + C @ 30 GeV/c
p + C @ 60 GeV/c	π- + C @ 60 GeV/c
p + Al @ 60 GeV/c	p + C @ 120 GeV/c (w FTPCs) 🔎
p + Be @ 60 GeV/c	p + Be @ 120 GeV/c (w FTPCs)
π+ + C @ 60GeV/c	p + C @ 90 GeV/c (w FTPCs)
π+ + Be @ 60 GeV/c	

Published (no spectra)

Publication in progress

Advanced analysis

- Full particle yields and spectra from these data sets
- Goal with these measurements is to span the phase space of primary and secondary interactions in neutrino targets and surrounding materials
- Each measurement becomes a point for interpolation in MC generators

Results on spectra from thintarget p+C @ 120 GeV

- This data set is high priority: represents the primary proton interaction in NuMI/NOvA/MINERvA.
- Relies on new Forward TPCs to see elastic, quasielastic events
- New tracking algorithm is used for integrating the FTPCs into the analysis:
 - Cellular automaton-based local tracking with Kalman filter for global track fit
- Charged and neutral particle yields from ~3 million interactions

p+C @ 120 GeV K⁰_S invariant mass fits

- 2016: Higher magnetic field, no forward TPCs
- 2017: Lower magnetic field, full forward TPC system

p+C @ 120 GeV Charged hadron multiplicities: published last year

- Measured multiplicities: π⁺, π⁻, p,
 p

 K⁺, K⁻
- Neutral hadron multiplicities used to estimate backgrounds from with weak neutral decay products
- Two complementary data sets again combined for final multiplicity result
- Results will soon be used to reduce DUNE beam flux uncertainties
- 2016, 2017 data sets combined

p+C 90 GeV/c

- Differential multiplicities for the charged and neutral analysis of the p+C 90 GeV/c dataset
- Newest NA61 result publication in progress
- One angular bin for selected samples shown
- Have results on π^{\pm} , K^{\pm} , p, \overline{p} , K^{0}_{S} , Λ , $\overline{\Lambda}$

geant4-10-07

PPFX: Package to Predict FluX

- Developed by the MINERvA collaboration for the NuMI beam
- Experiment-independent neutrino flux determination package for the Neutrinos at the Main Injector (NuMI) beam
 - MINERvA Collaboration, Phys. Rev. D 94, 092005, Leonidas Aliaga Soplin, PhD thesis
- Provides hadron production corrections and propagate uncertainties
- Uses external hadron production data

PPFX: Package to Predict FluX

L. Ren

Total hadron production uncertainty includes:

Pion production (proton + carbon)
Kaon production (proton + carbon)
Pion production (neutron + carbon)
Nucleon production (proton + carbon)
Meson incident interactions
Nucleon incident interactions
Absorption outside the target
Absorption inside the target
Others not covered by below categories

NA61 p+C 120 GeV/c results can address the red items

Expect updated PPFX predictions in a few months!

Coming soon: measurements with NuMI replica target

- Took high statistics (18M events) in 2018 with 120 GeV/c protons
 - Analysis underway on hadron yields from this target
- Calibration in progress for this data set

NuMI target analysis

- Calibration of detectors
 underway
- Complicated geometry of the target, with azimuthal dependence
- NA61 acceptance is not uniform due to dipole analysis magnet!

Third phase: upgraded detector

- Many major detector upgrades recently completed.
 - New forward Projectile Spectator Detector module, reconfiguration of existing detector
 - Replacement of old TPC electronics with system from ALICE
 - New silicon vertex detector for open charm studies
 - RPC-based replacement for TOF-L/R walls
 - New beam position detectors
 - New trigger/DAQ, combined with new electronics, will give a major upgrade in data collection rate (~100 Hz \rightarrow ~1 kHz)

TPC front-end cards

Data collection: now and near future

- Data collection is underway for the Run 3 program!
 - 31 GeV/c protons on T2K replica-target: collected 180M events in 2022 (nearly 20x 2010 statistics) to measure high-momentum kaon yields
 - Kaon scattering with thin targets for secondary interaction modeling. In 2023, took:
 - K+C @ 60GeV: 137.7 M
 - Higher statistics at 120 GeV/c:
 - p + Ti @ 120 GeV: 111.7 M
 - p + C @ 120 GeV: 82.4 M +

_____>20x justpublished paper!

Data collection: now and near future

- LBNF/DUNE prototype target (2024)
- Target designed and built by RAL targetry group to expected dimensions of LBNF/DUNE target: 1.5 m long
- New TPC added to track particles exiting target
- Took 250M events summer 2024
- 2025 data: planning to run with lower-density graphite target

Future after 2025: low-energy beam?

- Many groups are interested in hadron production with beams in the 1-20 GeV region, below the range the current H2 beam is capable of providing
 - Potential significant improvement in atmospheric neutrino flux prediction
 - **FNAL Booster Neutrino Beam**

- Total HP $-\pi^+$ prod.

-K⁺ prod. -Nuc inel.

--- π prod. --- K prod.

Nuc tot.

π tot.

5

- Nuc gel.

—π ael.

Neutrino energy (GeV)

Leo Aliaga

T2K/HyperK secondary interactions

L. Cook (Bartol Group) atmospheric neutrino flux

E, (GeV)

Muon neutrinos at SBND

SBND Work in Progress

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Current estimation at SBND

OJ

Principle of a low-energy beam for NA61/SHINE

- New beam design by CERN beam group in collaboration with NA61/SHINE.
- Goal is to have beam available after (or even before) the next Long Shutdown
- Preparing a new organizational structure to seek funding for this project

NA61/SHINE++ Opportunities beyond 2025

- Interested in **low-energy data** at NA61/SHINE?
 - Or in other possible new beam/target combinations? Current beam will still be available.
- Open workshop "NA61++/SHINE: Physics Opportunities from Ions to Pions" was held in December 2022 at CERN - and we are still looking for new ideas and new people
- INDICO: https://indico.cern.ch/event/1174830/
- Atmospheric neutrino flux
- T2K/HK beam-related physics
- DUNE beam-related physics

•Booster Neutrino Beam

•New target materials and

and much more!

•COMET •JSNS2 42

Cosmic-ray physics in NA61/ SHINE

- Long-standing program within NA61/SHINE to make measurements of physics processes important to cosmic ray studies
 - Hadroproduction in ultrahigh-energy air showers
 - \bar{p} production in the galaxy

Antinuclei in the galaxy

 ho^0 and $ar{\mathbf{p}}$ Production in π^- -C at 158 GeV/c

New data coming!

Large p+p data set in 2025-26

Nuclear fragmentation data to be collected late 2024

Conclusions

NA61/SHINE has provided unique and critical data to support the global neutrino and cosmic ray programs

Efforts have reduced T2K's flux errors by factors of 4+

A new set of analyses is coming out, geared toward the current Fermilab program

Took data summer 2024 with LBNF/DUNE prototype target

Low-energy beam and other future options under study

Speaker supported by US Department of Energy