

UNIVERSITY OF AMSTERDAM

Beyond the Standard Model in the Higgs sector

Elizaveta Cherepanova* on behalf of the ATLAS collaboration

35th Rencontres de Blois Particle Physics and Cosmology 20 – 25 October 2024

* elizaveta, cherepanova@cern, ch

Introduction

- The Standard Model works well but has uncovered points:
 - Strong CP problem
 - Dark matter candidates
 - Baryon asymmetry in the universe
 - $(g-2)\mu$ anomaly

- An extended Higgs sector can solve some of these problems:
 - ≻Two-Higgs-doublet model (2HDM) and modifications:
 - 2HDM+scalar boson S (2HDM+S)
 - Next-to-2HDM (N2HDM)
 - General 2HDM with dropped Z₂ symmetry (g2HDM)

> Next-to-minimal supersymmetric model (NMSSM)

Blois 2024 – 23 October 2024

CP-odd

 $\begin{array}{c} 2\text{HDM} \\ h \ H & H^+ \ H^- & A \\ \text{CP-even} & \text{Charged} & \text{CP-odd} \\ \hline \textbf{NMSSM} \\ H_1 \ H_2 \ H_3 & H^+ \ H^- & A_1 \ A_2 \\ \end{array}$

Charged

CP-even

In this talk

• Only full Run-2 ATLAS analyses:

Search for low mass $X \rightarrow \gamma \gamma$, arXiv:2407.07546

Search for $H \rightarrow aa \rightarrow 4\gamma$, Eur. Phys. J. C 84 (2024) 742

Search for heavy $H \rightarrow \text{multi}-l + b-\text{jets}$, JHEP 12 (2023) 081

Search for $X \rightarrow 4l + \text{MET/jets}$, arXiv:2401.04742

Low mass resonances

High mass resonances

Search for low mass $X \rightarrow \gamma \gamma$ arXiv:2407.07546

Low mass $X \rightarrow \gamma \gamma$: Introduction

- Looking for spin-0 resonances in the 66 to 110 GeV mass range with 2 photons in the final state
- Benchmark models: 2HDM, N2HDM, NMSSM
- Spin-0 boson can:
 - Act as a scalar partner of dark matter
 - Be an axion and explain baryon asymmetry
- Two approaches:
 - Model-Independent search for $X \longrightarrow Only ggF$ production
 - Model-Dependent search for low-mass Higgs boson

Production modes: ggF, VBF, ttH, WH, ZH

- Main backgrounds:
 - Continuum background: non-resonant $\gamma\gamma$, γj , jj
 - Resonant Drell-Yan (DY): $Z \rightarrow ee$

j and e misidentified as γ

Low mass $X \rightarrow \gamma \gamma$: Analysis strategy

- For each photon, $E_T/m_{\gamma\gamma} > 22/58 \approx 0.38 \rightarrow$ to guarantee exponentially falling background ($m_{\gamma\gamma} = 58 \ GeV$ chosen to maximize signal efficiency)
- Pass the e/γ ambiguity BDT criteria
- 3 event categories depending on conversion of each photon in the pair
- Further categorization in the Model-Dependent search with the category BDT*
- Signal $m_{\gamma\gamma}$ is modelled using a double-sided Crystal-Ball (DSCB)
- Data-driven estimation of backgrounds:
 - Continuum bkg: 2D side-band method
 - DY: modelled with DSCB
- Final fit to the $m_{\gamma\gamma}$ spectra

Blois 2024 – 23 October 2024

E. Cherepanova

Low mass $X \rightarrow \gamma \gamma$: Results

Search for $H \rightarrow aa \rightarrow 4\gamma$ Eur. Phys. J. C 84 (2024) 742

$H \rightarrow aa \rightarrow 4\gamma$: Introduction

- Looking for the decay of anomalous Higgs boson into two axion-like particles (ALPs) with 4 photons in final state
- Benchmark model: NMSSM
- ALPs can explain anomalous magnetic moment of muon $(g 2)\mu$
- Probing the m_a $c_{a\gamma\gamma}$ parameter space:
 - $100 MeV \le m_a \le 60 GeV$
 - $10^{-5} TeV^{-1} \le c_{a\gamma\gamma} \le 1 TeV^{-1}$
 - Decay length $\tau_a \propto \Lambda^2 / \left(m_a^3 |c_{a\gamma\gamma}|^2 \right)$

 10^{3}

 $C_{\gamma\gamma}^{\rm eff}|/\Lambda$ [TeV

 10^{-6}

 $\Upsilon \rightarrow inv. + \gamma$

SN1987

SN Decay

 $(g-2)_{\mu}$

HB stars

Cosmology

LEP

 10^{3}

 $H \rightarrow aa \rightarrow 4\gamma$: Analysis strategy

- Signal regions:
 - Defined by requiring m_{inv}^{reco} to be near the Higgs boson mass
 - Split per m_a bins
- Long-lived search: $10^{-5} < c_{a\gamma\gamma} < 0.1 \ TeV^{-1}$
- Prompt search: $0.1 < c_{a\gamma\gamma} < 1 \, TeV^{-1}$

- Data-driven background estimate
- *m^{reco}*_{inv} sidebands are used for background estimation
- Backgrounds: $h \rightarrow \gamma \gamma$, multi-photon QCD

E. Cherepanova

 $H \rightarrow aa \rightarrow 4\gamma$: Results

- Upper limits on $B(H \rightarrow aa \rightarrow 4\gamma)$ at 95% CL for $c_{a\gamma\gamma} = 10^{-5}$ and $c_{a\gamma\gamma} = 1$
- No significant excesses
- Largest deviation in range 10 GeV $\leq m_a \leq$ 25 GeV (local significance **1.2** σ)

 $H \rightarrow aa \rightarrow 4\gamma$: Results

- Limits on BR converted into limit on ALP mass and coupling to photons $c_{a\gamma\gamma}$, assuming $B(a \rightarrow \gamma\gamma) = 1$, $\Lambda = 1 TeV$ at 95% CL
- Significantly reduces the allowed parameter space that could explain $(g-2)\mu$

Search for heavy $H \rightarrow \text{multi-}l + b\text{-jets}$ JHEP 12 (2023) 081

$H \rightarrow \text{multi-}l + b\text{-jets:}$ Introduction

• Looking for a heavy scalar that decays with same-sign top, 3-top, 4-top final states

- Benchmark models:
 - General 2HDM without Z₂ symmetry with coupling to tops (g2HDM)
 - R-parity-violating SUSY (not covered in this talk)
- g2HDM:
 - Allows flavor changing neutral Higgs without affecting the alignment limit of the SM Higgs
 - Can address electroweak baryogenesis, strong CP problem, flavor problem
 - Was not tested at the LHC before

Blois 2024 – 23 October 2024

E. Cherepanova

$H \rightarrow \text{multi-}l + b\text{-jets}$: Analysis stratedy

- 17 SRs:
 - A DNN classifies event into 5 orthogonal regions
 - Then splits according to the lepton multiplicity and charge
- Irreducible backgrounds:
 - $t\bar{t}W$ normalized to data
 - VV+HF, $t\bar{t}Z/\gamma^*$ +LF modelling corrected in dedicated CRs
 - Material conversion estimated in 2 CRs
- Reducible backgrounds :
 - Fake leptons estimated via template method

E. Cherepanova

• Charge-flip electrons rate measured in data using $Z \rightarrow ee$

ATLAS Simulation

tta

0.8⊟

0.7

m_⊔ = 400 GeV, √s=13 TeV. 139 fb

ttt

Background

-ttt

ttta

sstt –tta

ttt

-tttt

-ttta

tttt

$H \rightarrow \text{multi-}l + b\text{-jets}$: Results

• Post-fit (and pre-fit) event yields with expected signal $m_H = 900 \ GeV$ and couplings $\rho_{tt} = 0.6$, $\rho_{tc} = 0.0$, $\rho_{tu} = 1.1$

$H \rightarrow \text{multi-}l + b\text{-jets}$: Results

- Observed significance for a heavy scalar with $m_H = 900 \ GeV$ as a function of the coupling values ρ_{tt} , ρ_{tc} , ρ_{tu} normalized to their sum.
- Observed and expected exclusion limit at 95% CL for coupling values $\rho_{tt} = 0.4, \, \rho_{tc} = 0.2, \, \rho_{tu} = 0.2$

Blois 2024 - 23 October 2024

Search for $X \rightarrow 4l + MET/jets$ arXiv:2401.04742

$X \rightarrow 4l + MET/jets$: Introduction

- Looking for heavy resonances with 4 leptons ($e \text{ or } \mu$) + missing transverse momenta (MET, E_T^{miss}) or jets in the final state
- Benchmark models:
 - $2HDM+S \rightarrow scalar S can be a dark matter candidate$
 - 2HDM \rightarrow consistent with baryogenesis scenario
- Masses of the bosons:
 - 390 $< m_R < 1300 \text{ GeV}$
 - 320 $< m_A < 1300 \text{ GeV}$
 - 220 $< m_H < 1000 \, {
 m GeV}$
 - $m_S = 160 \text{ GeV}$
- Main backgrounds:
 - $q\bar{q} \rightarrow ZZ$ (~84.6%)
 - $gg \rightarrow ZZ$ (~11.7%)

$X \rightarrow 4l + MET/jets$: Analysis strategy

- $m_{4l} > 200 \ GeV$
- 3 lepton channels: 4μ , 4e, $2\mu 2e$
 - Two same flavor and opposite sign pairs
- Mass on the final in
 Combined in the final in
 Cut based optimization of regions generate signal shapes between generated mass planes (m_R, m_H) and (m_A, m_H)
 - Background modelled with empirical function*

*more in backup Blois 2024 – 23 October 2024

Signal region	$R \to SH \to 4\ell + E_{\rm T}^{\rm miss} \text{ and } A \to ZH \to 4\ell + X$							
SR1	$n_{b-\text{jets}} = 0$	$n_{\rm jets} = 0$	$E_{\rm T}^{\rm miss}$ significance >2.0					
SR2		$n_{\rm jets} \ge 1$	$p_{\rm T}^{4\ell} > 10 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ significance > 3.5				
SR3			$p_{\rm T}^{4\ell}$ < 10 GeV	$2.5 < E_{\rm T}^{\rm miss}$ significance < 3.5				
	$A \to ZH \to 4\ell + X$							
SR4	$n_{b-\text{jets}} = 0$	$n_{\rm jets} \ge 2$	$ m_{jj} - m_Z < 20 \text{ GeV}$					
SR5			$ m_{jj} - m_Z > 20 \text{ GeV}$					
SR6		$n_{\rm jets} = 1$						
SR7	$n_{b ext{-jets}} \ge 1$							

$X \rightarrow 4l + MET/jets$: Results

- Upper limits at 95% CL
- No significant deviation from the SM
- $R \rightarrow SH \rightarrow 4l + E_T^{miss}$: > Observed: 6.8 – 119.2 fb > Expected: 7.7 – 70.3 fb
- $A \rightarrow ZH \rightarrow 4l + X$:

Observed: 2.1 – 32.3 fb
 Expected: 2.9 – 18.8 fb

Blois 2024 – 23 October 2024

Summary and conclusions

- Plenty of possibilities for **new physics** in **the extended Higgs sector**
- Many interesting searches for anomalous or additional Higgs bosons are performed by ATLAS
- Could not cover all the work that has been done recently. Check out these results $\underline{t} \rightarrow H^{\pm}\underline{b}, H^{\pm} \rightarrow c\underline{b}, \underline{t} \rightarrow q\underline{X}, \underline{X} \rightarrow b\overline{b}$, <u>Model independent</u> $W^{\pm}\underline{H} \rightarrow W^{\pm}W^{\pm}W^{\pm}W^{\pm} \rightarrow l^{\pm}\nu l^{\pm}\nu jj$, $\underline{a} \rightarrow \mu\mu$ in top quark pair events, <u>High mass $Z\gamma$, $\underline{H} \rightarrow Za, a \rightarrow \gamma\gamma$ </u>
- No significant deviation from the SM has been observed so far
- More results with full Run-2 are to be expected
- Some of the analyses will continue in Run-3 and at the HL-LHC
 → more production and decay channels

≻Stay tuned!

Thank you for your attention!

Blois 2024 - 23 October 2024

E. Cherepanova

23

Low mass $X \rightarrow \gamma \gamma$: Analysis strategy

• Event categorization with the category BDT:

CategorySelection RequirementModel-Independent categoriesUU2 unconverted photons

- UC 1 converted photon and 1 unconverted photon
- CC 2 converted photons

Model-Dependent categories

- UU1 UU and category BDT score < -0.2
- UU3 UU and category BDT score [-0.2,0)
- UU3 UU and category BDT score ≥ 0
- UC1 UC and category BDT score < -0.2
- UC2 UC and category BDT score [0.2,0)
- UC3 UC and category BDT score ≥ 0
- CC1 CC and category BDT score < -0.2
- CC3 CC and category BDT score [-0.2,0)
- CC3 CC and category BDT score ≥ 0

Category BDT score

The expected number of signal events, fractions of each Higgs boson production modes and the number of background events per GeV at $m_{\gamma\gamma} = 90 \text{ GeV}$

	SM-l	ike Hig	Ba	Background				
BDT Category	Total	ggF	VBF	WH	ZH	tīH	Total	DY
		[%]	[%]	[%]	[%]	[%]	[GeV ⁻	¹] [GeV ⁻¹]
1	741	97.1	1.2	1.0	0.6	0.1	18877	2179
2	942	93.4	2.9	2.1	1.2	0.4	14014	713
3	1187	72.4	13.5	6.7	4.0	3.4	6522	2 294
Total	2870	85.7	6.8	3.7	2.2	1.6	39413	3186

$H \rightarrow aa \rightarrow 4\gamma$: Analysis strategy

- At least 2 photons
- Di-photon triggers
 - $E_T^{\gamma \ lead} > 35 \ GeV$
 - $E_T^{\gamma \ sublead} > 25 \ GeV$
- Photon reco categories:
- 4S: at least 1 tight ID γ , all remaining loose ID
- 3S: 3 tight ID γ
- 2M: 2 merged γ , no additional loose ID γ
- + 1M1S: exactly 1 merged and 1 loose ID γ
- 2S: 2 tight ID γ , no additional loose ID γ
- $4S_p$: at least 3 tight ID γ , all remaining loose ID

Model Parameters	Signal Region Definition								
I	Long-lived ALP Search: $C_{a\gamma\gamma} <$	0.1							
	2M, 1M1S and 2S Categories								
$0.1 \text{ GeV} \le m_a < 3.5 \text{ GeV}$	$115 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$								
	3S Category	4S Category							
$3.5 \text{ GeV} \le m_a < 10 \text{ GeV}$	$105 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$							
	$0 \text{ GeV} < m_a^{\text{reco}} < 10 \text{ GeV}$	$0 \text{ GeV} < m_a^{\text{reco}} < 12 \text{ GeV}$							
$10 \text{ GeV} \le m_a < 25 \text{ GeV}$	$100 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 125 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$							
	$6 \text{ GeV} < m_a^{\text{reco}} < 26 \text{ GeV}$	$8 \text{ GeV} < m_a^{\text{reco}} < 28 \text{ GeV}$							
$25 \text{ GeV} \le m_a < 40 \text{ GeV}$	$100 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 125 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$							
	$20 \text{ GeV} < m_a^{\text{reco}} < 40 \text{ GeV}$	$23 \text{ GeV} < m_a^{\text{reco}} < 43 \text{ GeV}$							
$40 \text{ GeV} \le m_a \le 62 \text{ GeV}$	$90 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 115 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$							
	$30 \text{ GeV} < m_a^{\text{reco}} < 65 \text{ GeV}$	$38 \text{ GeV} < m_a^{\text{reco}} < 65 \text{ GeV}$							
Prompt ALP Search: $0.1 < C_{a\gamma\gamma} < 1$									
	$4S_p$ Category								
$5 \text{ GeV} \le m_a < 25 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$								
	$ m_a - m_a^{\text{reco}} < 1 \text{ GeV}$								
$25 \text{ GeV} \le m_a < 40 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$								
	$ m_a - m_a^{\text{reco}} < 2 \text{ GeV}$								
$40 \text{ GeV} \le m_a < 50 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$								
	$ m_a - m_a^{\text{reco}} < 3 \text{ GeV}$								
$50 \text{ GeV} \le m_a < 55 \text{ GeV}$	$120 \text{ GeV} < m_1^r$	$\frac{eco}{nv} < 130 \text{ GeV}$							
	$ m_a - m_a^{\text{reco}} < 5 \text{ GeV}$								
$55 \text{ GeV} \le m_a \le 62 \text{ GeV}$	$120 \text{ GeV} < m_{\text{in}}^{\text{r}}$	$r_{\rm nv}^{\rm eco} < 130 {\rm GeV}$							
	$ m_a - m_a^{\text{reco}} $	° < 8 GeV							

 $H \rightarrow aa \rightarrow 4\gamma$: Results

• Number of data and estimated background events in the signal region of the most sensitive categories

$H \rightarrow aa \rightarrow 4\gamma$: Results

- Upper limits on
 B(H → aa → 4γ) at 95%
 CL for different ALP photon coupling values
 (long-lived search)
- No significant excesses

ATLAS

 $C_{a\gamma\gamma} = 0.01$

95% CL limits

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

→4γ)

Upper limit on $B(H \rightarrow aa$

10

 10^{-2}

10⁻³ ⊧

10⁻⁴

n

10

Blois 2024 – 23 October 2024

20

30

E. Cherepanova

$H \rightarrow \text{multi-}l + b\text{-jets}$: Analysis stratedy

 Description of the loose inclusive ("L"), medium inclusive ("M"), medium exclusive ("M_{ex}"), and tight ("T") lepton definitions.

- Event selection summary:
 - OS-SF is opposite sign charge and same flavor leptons
 - CAT == DNN category

				е				μ			
Lepton categorization		L	М	M _{ex}	Т	L	М	M	<i>I</i> _{ex}	Т	
Isolation		Yes		X7 77 1.	N	T 1.	Yes	×s			
Non-prompt lepton BDT WP		No	Tight	Tight-not- VervTight	VeryTight	No	Tight	Tigh Very	t-not-	VeryTight	
Identification	I	Loose	Tight			Loose	Mediur		Iedium		
Electron charge-misassignment veto		No		Yes		Not applicable					
Electron conversion candida	ite veto	No		Yes (except	<i>e</i> *)	Not applicable					
Iransverse impact parameter significance $ d_0 /\sigma_d$	r			< 5				< 3			
Longitudinal impact parame	ter	< 0.5 mm									
$ z_0 \sin \theta $											
Lanton ootogony			100			20				10	
Lepton category	2ℓSS					51				41	
Lanton definition	(T,T) with $\geq 1 \ b^{60\%} \parallel$				(L,T,M)	(L, T, M) with $\geq 1 \ b^{60\%} \parallel$					
Lepton definition	(T,	<i>M</i>) w	ith ≥ 2	$b^{77\%}$	(L, M, M) with $\ge 2 b^{77\%}$				(L, L, L, L)		
Lepton $p_{\rm T}$ [GeV]		(20, 20)			(10, 20, 20)				(10, 10, 10, 10)		
$m_{\ell^+\ell^-}^{ m OS-SF}$ [GeV]			_		> 12						
$ m_{\ell^+\ell^-}^{\text{OS}-\text{SF}} - m_Z $ [GeV]			_		> 10						
N _{jets}		≥ 2									
N _{b-jets}	$\geq 1 \ b^{60\%} \parallel \geq 2 \ b^{77\%}$										
Region split	(sstt, ttq, ttt, tttq, tttt) × $(Q^{++}, Q^{})$				(ttt, tttc	l, tttt) × ()		_		
Region naming	$2\ell SS ++ CAT sstt$				3ℓ	++ CA7			4ℓ		
	2	elss +	+ CAT	ttq	3ℓ	++ CAT					
	2	2ℓSS +	+ CAT	`ttt	3ℓ ++ CAT tttt						
	24	ℓSS +	+ CAT	tttq	3ℓ CAT ttt						
	$2\ell SS ++ CAT tttt$				3ℓ CAT tttq						
	24	lss –	– CAT	sstt	3ℓ	CA1	T tttt				
	$2\ell SS CAT ttq$										
	$2\ell SS CAT ttt$										
	24	lss –	– CAT	tttq							
					1						

29

$H \rightarrow \text{multi-}l + b\text{-jets}$: Results

- Observed and expected exclusion limit at 95% CL for different values of the couplings $\rho_{tt},\,\rho_{tc},\,\rho_{tu}$

- Observed and expected exclusion limit at 95% CL for different values of the couplings $\rho_{tt},\,\rho_{tc},\,\rho_{tu}$

$X \rightarrow 4l + MET/jets$: Analysis strategy

• Background modelled with empirical function for $200 < m_{41} < 1200 \text{ GeV}$:

- f_1 models the ZZ threshold around $2 \cdot m_Z$
- f_2 models the high mass tail
- Transition between f_1 and f_2 performed by the Heaviside step function H(x) around m_0
- m_0 is fixed to 260 GeV ($q\bar{q} \rightarrow ZZ$), 240 GeV ($gg \rightarrow ZZ$), 250 GeV(VVV) and 230 GeV (other backgrounds) Blois 2024 – 23 October 2024

$X \rightarrow 4l + MET/jets: Results$

• Observed and expected m_{4l} distributions

