Searches For Beyond The Standard Model Physics Using Challenging And Long-lived Signatures With The ATLAS Detector

35th Rencontres De Blois

Ian Ramirez-Berend

On Behalf Of The ATLAS Collaboration

23 October 2024

OVERVIEW

Carleton

- Long-Lived (talks from <u>Ben</u>, <u>Lisa</u>, and <u>Daniele</u>) and Exotics event signatures serve as exciting and rich opportunities to probe Beyond the Standard Model (BSM) physics
- ATLAS searches for a wide variety of new physics scenarios, each one with unique event signatures and challenges
- 3 recent ATLAS results covered here

<u>Image Source</u>

INCLUDED ANALYSES

- Search for displaced leptons in 13 TeV and 13.6 TeV pp collisions with the ATLAS detector CONF Note: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-011/</u> Full Run 2 (140 fb⁻¹) + Partial Run 3 (56.3 fb⁻¹)
- 2. Search for neutral long-lived particles that decay into displaced jets in the ATLAS calorimeter in association with leptons or jets using pp collisions at $\sqrt{s} = 13 \text{ TeV}$ Submitted to JHEP, arXiv: 2407.09183 Full Run 2 (140 fb⁻¹)
- 3. Search for light neutral particles decaying promptly into collimated pairs of electrons or muons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector Submitted to EPJC, arXiv: 2407.09168 Full Run 2 (140 fb⁻¹)

Search For Displaced Leptons In 13 TeV And 13.6 TeV *pp* Collisions With The ATLAS Detector

BASELINE EVENT SIGNATURE

Two light leptons (electrons/muons) which are displaced from the initial interaction

- Pair produced LLPs; decay to lepton + invisible
- Benchmark model: Gauge-Mediated SUSY Breaking (GMSB)
 - LLP is second lightest SUSY particle: slepton $(\tilde{e}, \tilde{\mu}, \tilde{\tau})$
 - lightest SUSY particle is Gravitino $(\tilde{G}) \rightarrow$ invisible in detectors
- slepton is long-lived due to weak gravitational coupling

SIGNATURE CHALLENGE

- Displaced + low momentum particles difficult to trigger + reconstruct
- Standard lepton triggers based on promptly decaying particles
 - Displaced electrons can look like photons
 - Photon trigger has higher p_T threshold
 - 'Standalone' muon triggers also have higher p_T threshold

Track in inner detector

IMPROVED TOOLS FOR DISPLACED SIGNATURES

Large Radius Tracking (LRT)

- Standard tracking: prompt particles coming from interaction point
 - Low transverse impact parameter (d₀) w.r.t. the primary vertex (PV)
- <u>LRT</u>: secondary tracking for displaced signatures (~2mm < |d₀| < 300mm)
 - Improved LRT for Run; 3 included in trigger chain
- LRT-based lepton triggers for displaced leptons:
 - lower p_T threshold than in Run2

IMPROVED TOOLS FOR DISPLACED SIGNATURES [CONT.]

Liquid Argon (LAr) EM Calorimeter

- Improved Run 3 electronics give better granularity + fast readout
- help with displaced signatures:

LLP from PV

PV

- LAr Arrival Timing: when the EM shower starts based on deposits in
- LAr Pointing: the direction of the EM shower based on deposits in first two layers
- LAr measures used in Boosted Decision Tree (BDT) extend sensitivity to very displaced ($|d_0| > 300$ mm) electron signatures

Pointing direction not at PV

Displaced Electron

....

LAr Laver 2 LAr Laver

No significant excess above SM expectation found

Additional Reinterpretation: <u>arXiv:2410.16835 [hep-ex]</u> (Very New Results!)

Search For Neutral Long-lived Particles That Decay Into Displaced Jets In The ATLAS Calorimeter In Association With Leptons Or Jets Using *pp* Collisions At $\sqrt{s} = 13$ TeV

THREE EVENT SIGNATURES

Baseline Signature: displaced jet in hadronic calorimeter (HCal) + another event-level object to trigger on

- produced with leptonically decaying vector boson (W/Z)
- leptonically decaying Z boson

CALORIMETER RATIO (CalRatio) AND SIGNATURE CHALLENGE

- $CalRatio = \frac{E_{HCal}}{E_{EM}}$: ratio of energy deposited in the HCal to the energy deposited in the EM calorimeter
 - Should be ~ 0.5 for SM jets: 2/3 in EM, 1/3 in Hcal
- For LLPs decaying in the HCal, expect large CalRatio

- Displaced jets alone can be difficult to trigger
 - Use other detector objects:
 - Trigger on prompt leptons
 - Additional reconstructed objects (other jets, leptons)
 - Use dedicated CalRatio Trigger; max ~6% of jet energy in EM calo.

ANALYSIS STRATEGY

Baseline Strategy

Carleton

- All channels use jet-level neural network (NN):
 - Separate signal-like displaced jets from background
 - Beam induced background (BIB) + SM multijet
- Additional ML tools used in each channel

Displaced jet + two resolved jets (CalRatio + 2J):

 Event-Level NN is trained to remove BIB events, leave only SM multijet

DISPLACED JET + $W^{\pm} \rightarrow \ell^{\pm} \nu$ (CALRATIO + W):

- Single lepton trigger (no additional leptons)
- Lepton requirement also removes BIB events
- Event-Level BDT to separate from SM ℓ + jet backgrounds
 - Trained on jet + lepton information
 - Missing E_T from the neutrino

DISPLACED JET + Z $\rightarrow \ell^+ \ell^-$ (CALRATIO + Z):

- Dilepton Trigger:
 - Removes BIB events
 - Reconstructs Z mass
- Event-Level BDT to separate from Z + jet backgrounds
 - Trained on jet + dilepton information
 - Reconstructed kinematics of the Z

15

RESULTS

Carleton ATLAS

No significant excess above SM expectation found

Search For Light Neutral Particles Decaying Promptly Into Collimated Pairs Of Electrons Or Muons In *pp* Collisions At $\sqrt{s} = 13$ TeV With The ATLAS Detector

BASELINE EVENT SIGNATURE

Two highly-collimated lepton pairs (e^+e^- or $\mu^+\mu^-$) which are reconstructed as a Lepton-Jet (LJ)

- Dark photon (γ_d) + dark Higgs (H_d) extensions with two benchmark models:
 - HAHM: γ_d couples directly with H_d

Carleton

- FRVZ: H_d decays to dark fermions which then decay to γ_d and Hidden Lightest Stable Particle (HLSP) [invisible in detectors]
- $m_{\gamma_d} \ll m_H \rightarrow$ causes collimated lepton pairs
- Pair-produce $\gamma_d \rightarrow$ require two LJs in final state

SIGNATURE CHALLENGE

- Standard lepton (e, μ) reconstruction generally targets isolated leptons
- Electrons from γ_d decays tend to merge showers in EM calo., with two associated tracks → reconstructed as 1 electron
- Standard muons must be isolated from both tracks and calo deposits → require modified isolation to reconstruct γ_d → 2μ

ANALYSIS STRATEGY: BUMP HUNT

- Carleton ATLAS
 - Reconstructed LJ masses give clear resonance peaks at m_{γ_d}
 - Easily distinguished from background: smoothly falling + known resonance peaks

RESULTS

Carleton

FRVZ Model $(H \rightarrow 2\gamma_d (\rightarrow \ell \ell) + 2HLSP)$

improvement from better LJ mass fit

First results for the HAHM search Stricter limits than FRVZ due to harder γ_d spectrum

No significant excess above SM expectation found

CONCLUSIONS

- Unique signatures provide handles to probe Beyond the Standard Model physics
- 'Smoking gun' type events require non-standard techniques to detect:
 - Detector improvements, machine learning, and reconstruction techniques all help push further into the vast phase-space of new physics
- 3 new ATLAS results have all set strict and competitive limits on their respective processes, allowing us to constrain the allowed possibilities

