LATEST RESULTS FROM THE NA62 EXPERIMENT @CERN

Letizia Peruzzo

Johannes Gutenberg University Mainz

on behalf of NA62 Collaboration

NA62 EXPERIMENT

NA62

NA62 BROAD PHYSICS PROGRAMME

proton beam on dump module

- Precise tests of lepton flavor universality, lepton number and flavor violation
- > First row CKM unitarity
- New Physics searches at the EW scale with sizeable coupling to SM particles via indirect effects in loops
- New Physics searches below the EW scales (MeV-GeV range) feebly-coupled to SM particles via direct detection of longlived particles
- Dark Photon (DP), Axion Like Particle (ALP), Dark Scalar (S), Heavy Neutral Lepton (N)

OUTLINE

> Experiment apparatus

- > Precision measurements with kaon and pion $\Box K^+ \rightarrow \pi^+ \gamma \gamma$, $\pi^o \rightarrow e^+ e^-$
- > Lepton Number and Flavor Violation searches $K^+ \rightarrow \pi \pi^o \mu e$
- → Hidden Sector searches with kaons and in dump mode \square $K^+ \rightarrow \pi^+ X (X \rightarrow \gamma \gamma), A' \rightarrow \ell^+ \ell^-$ and $X \rightarrow hadrons$

Conclusions

NA62 DETECTOR LAYOUT

[NA62 Detector Paper, 2017 JINST 12 P05025]

Detector layout optmized for the main measurement $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

NA62 Performance Keystones:

 \Box High-precision time measurements $\mathcal{O}(100) ps$ timing between detectors

- \Box High-efficiency and high-precision tracking $\mathcal{O}(10^4)$ background suppression from kinematics
- \Box High-performance particle identification system $> 10^7$ muon rejection
- □ Hermetic photon-veto system > 10^8 rejection of π^o from $K^+ \rightarrow \pi^+ \pi^o$ decays

NA62 DETECTOR LAYOUT

Si-pixel stations for momentum and position

♦ Anticounter CHANTI veto detector

♦ Tracking STRAW Spectrometer 4 chambers + 1 dipole magnet \diamond Particle ID: RICH + Calorimeters (EM + hadron) + Muon Veto \diamond Photon Veto system (LKr, LAV, SAV) hermetic veto 0-50mrad

NA62 DATA TAKING

> Run1 2016 (45 days), 2017 (160 days) and 2018 (217 days) ~ 2.2×10^{18} Proton On Target (POT) collected in Run1 $6 \times 10^{12} K^+$ decays

Run2 2021 (85 days), 2022 (215 days), 2023 (150 days), 2024 ongoing and until LS3
 Larger K⁺ sample expected
 1.4 × 10¹⁷ POT collected in beam dump (10 days in 2021)
 One additional week in beam dump both in 2023&2024

Dedicate trigger streams to collect both single-track and multi-track final state events, based on hardware LO and software L1 trigger

> [Performance of the NA62 Trigger System, JHEP03 (2023) 122]

BLOIS 2024

PRECISION MEASUREMENTS

Additional analyses on precision not covered here: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ [JHEP11 (2022) 011] $K^+ \rightarrow \pi^o e^+ \nu \gamma$ [JHEP09 (2023) 040] $K^+ \rightarrow \pi^+ \gamma \gamma$

Published results in Phys. Lett. B850 (2024) 138513

distribution to

- > Crucial test of Chiral Perturbation Theory (ChPT)
- > All results so far consistent with leading order $\mathcal{O}(p^4)$ ChPT description
- > Decay rate and spectrum determined by a **single**, a priori unknown, $\mathcal{O}(1)$ parameter \hat{c} [Phys. Lett. B386 (1996) 403]
- > Decay described kinematic variable $z = \frac{m_{\gamma\gamma}^2}{m_{\gamma\gamma}^2}$

NA62 analysis details:

- Full Run1 data sets
- **External parameters from** [Rev. Mod. Phys. 84 (2012)][Phys. Lett. B835 (2022)]
- \Box Normalize to $K^+ \rightarrow \pi^+ \pi^o, \pi^o \rightarrow \gamma \gamma$ events $N_K \sim 5.6 \times 10^{10}$
- Analysis performed in $z = \frac{(P_{K^+} P_{\pi^+})^2}{m_{K^+}^2} > 0.2$ signal region
- $\square N_{K_{\pi\nu\nu}}^{obs} = 3984$, $N_{bkg}^{exp} = 291 \pm 14$

Backgrounds (validate in control regions with enhanced background and check Data/MC agreement)

- Multi- γ with merged clusters (e.g. $K^+ \rightarrow \pi^+ \pi^o \gamma$)
- $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ with 2 non reconstructed tracks

$K^+ ightarrow \pi^+ \gamma \gamma$

Published results in **Phys. Lett. B850 (2024) 138513**

Results in the ChPT $\mathcal{O}(p^6)$ description: $\hat{c}_6 = 1.144 \pm 0.077$ $\text{BR}_{\text{ChPT}\mathcal{O}(p^6)}(K^+ \to \pi^+ \gamma \gamma) = (9.61 \pm 0.17) \times 10^{-7}$

Model independent branching ratio summing over z bins $BR_{MI}(K^+ \rightarrow \pi^+ \gamma \gamma | z > 0.2) = (9.46 \pm 0.20) \times 10^{-7}$

Good agreement between modelindependent BR and ChPT description

$\pi^{o} \rightarrow e^{+}e^{-}$

> Measurement of a very rare decay of π^o

INARY RESULTS

 $BR(\pi^o \rightarrow \gamma \gamma) \approx 98.82\%$ $BR(\pi_D^o \rightarrow \gamma e^+ e^-) \approx 1.17\%$

- > Measurement experimentally challenging due to presence of radiative photon in final state
- Important role of radiative corrections
- Observable accessible by the experimets BR inclusive of final-state radiation $x = \frac{m_{ee}^2}{m_{-}^2}$

$$BR(\pi^o \to e^+ e^-(\gamma) \mid x > x_{cut})$$

 \Box Dalitz decay $\pi_D^o \rightarrow \gamma e^+ e^-$ dominant in low-x region \Box For x > 0.95 only $\approx 3.3\%$ of π_D^o enter the $\pi^o \to e^+e^-(\gamma)$ signal region

Diagram considered in theoretical predictions leading to BR($\pi^o \rightarrow e^+e^-$). Various $\pi^o \rightarrow \gamma^* \gamma^*$ transition form factors are considered

NA 6

State of the art so far (latest radiative corrections [JHEP10 (2011) 122] [Eur. Phys. J. 74 (2014) 8, 3010])

Experimental KTeV
$$BR(\pi^o \to e^+e^-) = (6.84 \pm 0.35) \times 10^{-8}$$

Phys. Rev. D 75 (2014) 012004
BR($\pi^o \to e^+e^-$) = (6.25 ± 0.03) × 10⁻⁸
Phys. Rev. Lett. 128 (2022) 112002

BLOIS 2024

$\pi^o ightarrow e^+ e^-$

 \succ Large sample of π^o available in NA62 via $K^+
ightarrow \pi^+ \pi^o$ decay

> Dedicate multi-track electron trigger line

> Normalization $K^+ \rightarrow \pi^+ e^+ e^-$ (same final state and trigger) $N_K \sim 8.6 \times 10^{11}$

3-track final state with vertex in FV
m_{ee} 130 - 140 MeV/c² for signal
m_{ee} 140 - 360 MeV/c² for normalization

> Main backgrounds:

★ K⁺ → π⁺e⁺e⁻ irreducible and flat in signal region
★ K⁺ → π⁺π^o_D (π^o → e⁺e⁻γ) irreducible at high x tail, or γ conversion in STRAW Spectrometer
★ K⁺ → π⁺π^o_Dπ^o_D with two undetected e[±]

 $BR_{Preliminary}(\pi^{o} \rightarrow e^{+}e^{-}) = (6.22 \pm 0.39) \times 10^{-8}$

Signal yield 597 ± 29

$$\chi^2/ndf = 25.3/19 \text{ p-value} = 0.152$$

LEPTON NUMBER AND LEPTON FLAVOR VIOLATION SEARCHES

Additional analyses on precision not covered here:

 $K^+ \to \pi^- \mu^+ \mu^+$ [Phys. Lett. B797 (2019) 134794] $K^+ \to \pi^- (\pi^o) e^+ e^+$ [Phys. Lett. B830 (2022) 137172] $K^+ \to \pi^\mp \mu^\pm e^+, \pi^o \to \mu^- e^+$ [Phys. Rev. Lett. 127 (2021) 131802] $K^+ \to \mu^- \nu e^+ e^+$ NA62Coll., Phys. Lett. B838 (2023) 137679]

$K^+ \rightarrow \pi \pi^o \mu e$

Published results in arXiv:2409.12981 Submitted to Phys. Lett. B

> Several scenario for generating LNV/LFV in charged processes

- Rich programme @NA62 in search for LN and LF violation
- > Dedicate multi-track trigger streams with electron and/or muon in final states
- > Analysis carried on with blind principle
- > World's leading sensitivity in many channels with UL $O(10^{-10})/O(10^{-11})$

 $K^+ \rightarrow \pi^- \mu^+ \mu^+$, $K^+ \rightarrow \pi^- (\pi^o) e^+ e^+$, $K^+ \rightarrow \pi^{\mp} \mu^{\pm} e^+$, $\pi^o \rightarrow \mu^- e^+$, $K^+ \rightarrow \mu^- \nu e^+ e^+$

- > First search for LNV decay $K^+ \to \pi^0 \pi^- \mu^+ e^+$ and LFV decays $K^+ \to \pi^0 \pi^+ \mu^\pm e^\mp$
 - □ Normalization channel $K^+ \rightarrow \pi^+ e^+ e^-$ (BR~3×10⁻⁷) 10975 candidates selected $\rightarrow N_K \approx 2 \times 10^{12}$
 - □ Full reconstruction of signal final state $\pi^o \rightarrow \gamma \gamma$ in EM calo, 3 charged tracks with PID $\pi \mu e$
 - □ Background from single or coincidence of two K^+ decays, with mis-PID and/or π decay-in-flight (evaluated with simulation validated in control samples)

O signal observed in the signal region $486 < m_{\pi^o\pi\mu e} < 502~{
m MeV}/c^2$ for all 3 investigated

Channel	Expected Background	Mechanism	<i>UL</i> on BR @ 90% CL
$K^+ \to \pi^o \pi^- \mu^+ e^+$	0.33 ± 0.07	$K^+ \rightarrow \pi^+ \pi^o \pi^o_D$ with soft γ undetected, $\pi^+ \rightarrow$	$2.9 imes 10^{-10}$
$K^+ \to \pi^o \pi^+ \mu^+ e^-$	0.29 ± 0.07	$\mu^+ \nu \text{ DIF and } e \rightarrow \pi \text{ mis-ID}$	$5.0 imes 10^{-10}$
$K^+ \to \pi^o \pi^+ \mu^- e^+$	0.004 ± 0.003	$K^+ \rightarrow \pi^o e^+ \nu + K^+ \rightarrow \pi^+ \pi^+ \pi^-$ with $\pi^- \rightarrow \mu^- \nu$ DIF and 1 π^+ undetected	$3.1 imes 10^{-10}$

15

HIDDEN SECTOR SEARCHES

Additional analyses on hidden sector not covered here:

 $K^{+} \rightarrow \pi^{+}XX(X \rightarrow e^{+}e^{-}, X \rightarrow e^{+}e^{-}) \text{ [Phys. Lett. B846 (2023) 138193]}$ $K^{+} \rightarrow e^{+}N \text{ [Phys. Lett. B 807 (2020) 135599]}$ $K^{+} \rightarrow \mu^{+}N \text{ [Phys. Lett. B 816 (2021) 136259]}$ $K^{+} \rightarrow \mu^{+}\nu X, K^{+} \rightarrow \mu^{+}\nu \bar{\nu}\nu \text{ [Phys. Lett. B 816 (2021) 136259]}$ $\overset{\text{BLOIS 2024}}{}$

$K^+ \to \pi^+ X$

Published results in **Phys. Lett. B850 (2024) 138513**

- > Axion-like particle (ALP) search in $a \rightarrow \gamma \gamma$ channel (dominant final state for $m_a < 3m_{\pi}$)
- > Direct by product of $K^+ \rightarrow \pi^+ \gamma \gamma$ analysis

NA62 IN BEAM DUMP CONFIGURATION

$A' \rightarrow \ell^+ \ell^-$

Published results in Phys. Rev. Lett. 133 (2024) 111802 **JHEP 09 (2023)**

CDA_{TAX} [mm] 40

30

20

BLOIS 2024

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

 10^{-10}

250

mm

×

70

- > SM extension via vector portal Dark Photon A'
- > New vector field feebly interacting with SM particles
- > Free parameters of the model $m_{A'}$ and kinetic coupling ε
- Production mechanism
 - \Box Bremsstrahlung: $\gamma^* p \rightarrow A' p'$

virtual photon exchange between proton and nucleus

Meson decay:

 $P \rightarrow \gamma A', V \rightarrow PA'$ with $V = \{\rho, \omega, \phi\}$ and $P = \{\pi^o, \eta, \eta'\}$

> Dominant decay in $\ell \overline{\ell}$ pair for $m_{A'} < 700 \text{ MeV/c}^2$ e^+e^- and $\mu^+\mu^-$ channels investigated

- Blind technique
- Backgrounds data-driven and simulation \Box Combinatorial dominant for μ channel random superposition of 2 uncorrelated halo μ
 - Prompt dominant for e channel secondary particles from μ -halo interaction with

material upstream or inside decay volume

 $A' \rightarrow \mu^+ \mu^-$

SR: $6 < Z_{TAX} < 40 \text{ m} \& \text{CDA}_{TAX} < 20 \text{ mm}$

1 event observed

$A' \rightarrow \ell^+ \ell^-$

Published results in **Phys. Rev. Lett. 133 (2024) 111802** JHEP 09 (2023)

- \succ Exclusion limit at 90% CL in the parameter space coupling arepsilon vs $m_{A'}$
- Region enclosed by the contour is excluded
- > Mass region $50 < m_{A'} < 600 \text{ MeV}/c^2$

(In published papers also ALP scenario is presented)

PRELIMINARY RESULTS

$X \rightarrow hadrons$

> New Physics search with hadron final state

- Dark Photon
 - □ Bremsstrahlung: $\gamma^* p \rightarrow A' p'$

virtual photon exchange between proton and nucleus

Meson decays:

 $P \rightarrow \gamma A', V \rightarrow PA'$ with $V = \{\rho, \omega, \phi\}$ and $P = \{\pi^o, \eta, \eta'\}$

Dark Scalar

□ B meson decays: $B^{\pm,0} \rightarrow K^{\pm,0,(*)}S$

> ALP

- Primakoff (on-/off-shell)
- □ Mixing with pseudoscalar mesons $P = \{\pi^o, \eta, \eta'\}$
- □ B meson decays: $B^{\pm,0} \rightarrow K^{\pm,0,(*)}a$

Proven that searches are **background free** not only at $N_{POT} = 1.4 \times 10^{17}$ but also in the future **full Run2** beam dump dataset of $N_{POT} = 10^{18}$

	· · · · · · · · · · · · · · · · · · ·
Particle	Final State
Dark Photon A'	$\pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{o}, \pi^{+}\pi^{-}\pi^{o}\pi^{o}, K^{+}K^{-}, K^{+}K^{-}\pi^{o}$
Dark Scalar S	$\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{o}\pi^{o},\ K^{+}K^{-}$
ALP a	$\pi^{+}\pi^{-}\gamma, \pi^{+}\pi^{-}\pi^{o},$ $\pi^{+}\pi^{-}\pi^{o}\pi^{o}, \pi^{+}\pi^{-}\eta,$ $K^{+}K^{-}\pi^{o}$

Altogether 36 combinations of production and decay channels studied

- * 2 charged hadrons in the final state
- \$ full PID (calorimeter and RICH)
- * neutral cluster in EM calorimeter to reconstruct $\gamma,~\pi^o$ and η
- $\boldsymbol{\boldsymbol{\ast}}$ Vertex in FV and pointing back to TAX

$X \rightarrow hadrons$

PRELIMINARY RESULTS

> 0 events observed in all control and signal regions

> Exclusion limit at 90% CL set on the parameter space coupling vs mass

Combination of all 36 productions/decay modes made through ALPINIST

23.10.2024

[Axion-Like Particles In Numerous Interactions Simulated and Tabulated, JHEP07 (2022) 094]

CONCLUSIONS

> NA62 successfully completed Run1 (2016-2018)

> Run2 data taking currently ongoing (from 2021 until LS3 at CERN)

> Rich physics programme to test the Standard Model and search for New Physics

Precision measurement in kaon and pion decays

$$K^+ o \pi^+ \gamma \gamma$$
 and $\pi^o o e^+ e^-$

Lepton Number and Flavor Violation decays

$$K^+ o \pi^o \pi \mu e$$

Hidden Sector with kaons

$$K^+ \to \pi^+ X \ (X \to \gamma \gamma)$$

Hidden Sector in dump mode

 $A' \rightarrow \ell^+ \ell^-, a \rightarrow \ell^+ \ell^-$ and $X \rightarrow hadrons (X = A', S, a)$

Many other analyses ongoing...

... and many new data are ready to be analyzed...

... and to be collected until LS3!

BACKUP SLIDES

$K^+ \rightarrow \pi^+ \gamma \gamma$

 $m_{\pi\gamma\gamma}$ spectra for signal (left) and normalization (right)

Background contamination in normalization $< 10^{-5}$

with merged clusters in

EM calorimeter

□ Select event in
$$440 < m_{\pi\gamma\gamma} < 550 \text{ MeV}/c$$

- Normalization $z \in [0.04, 0.12]$
- Signal $z \in [0.20, 0.51]$

Published results in Phys. Lett. B850 (2024) 138513

$$\frac{\partial^2 \Gamma}{\partial y \partial z} = \frac{m_K}{2^9 \pi^3} \left[z^2 (|A(\hat{c}, z, y^2) + B(z)|^2 + |C(z)|^2) + \left(y^2 - \frac{1}{4} \lambda(1, r_\pi^2, z) \right)^2 |B(z)^2 + B(z)^2 \right]$$

Decay rate parametrization in ChPT framework from [G. D'Amborsio, J. Portolés, Phys. Lett. B386 (1996) 403]

	Parameter	E787 [4]	NA48/2, NA62 [5,6]	This measurement
	$G_8 m_V^2 \times 10^6$	2.24	2.202	2.202
	$\alpha_1 \times 10^8$	91.71	93.16	92.80
	$\alpha_3 \times 10^8$	-7.36	-7.62	-7.45
	$\beta_1 \times 10^8$	-25.68	-27.06	-26.46
	$\beta_3 \times 10^8$	-2.43	-2.22	-2.50
	$\gamma_3 \times 10^8$	2.26	2.95	2.78
60 480 500 520 540	$\zeta_1 \times 10^8$	-0.47	-0.40	-0.11
m _{πνν} [MeV/c ²]	$\xi_1 \times 10^8$	-1.51	-1.83	-1.20
	$\eta_i \ (i = 1, 2, 3)$	0	0	0
$< 550 \text{ MeV}/c^2$	Estimated the $K_{\pi\gamma\gamma}$ sat	backgro mple.	und contribution	s in
·]	Source		Estimated backgrou	ind

 $291 \pm 8_{stat} \pm 12_{syst}$

External parameters used in this analysis and in previous analysis

MA62

[4] [Phys. Rev. Lett. 79 (1997) 4079] [5] [Phys. Lett. B730 (2014) 141] [6] [Phys. Lett. B732 (2014) 65]

7

round contributions

Systematics sources

Systematic uncertainties for \hat{c} , \mathcal{B} and $\mathcal{B}_{MI}(z > 0.2)$ measurements.

Source	δĉ	$\delta \mathcal{B} \times 10^7$	$\delta \mathcal{B}_{\rm MI}(z>0.2)\times 10^7$	_
Number of kaon decays	0.026	0.056	0.064	
Simulation of multi-photon backgrounds	0.016	0.034	0.026	
Simulation of $K_{3\pi}$ background	0.001	0.002	0.003	
Limited size of simulated samples	0.014	0.030	0.018	26
Total	0.034	0.072	0.072	-20

Total

$\pi^{o} \rightarrow e^{+}e^{-}$

PRELIMINARY RESULTS

 $\overline{BR(\pi^{o} \rightarrow e^{+}e^{-})}$

 $(6.12 \pm 0.06) \times 10^8$

Previous best measurement by KTeV $BR_{\text{KTeV}}(\pi^o \rightarrow e^+e^-(\gamma) \mid x > 0.95) = (6.44 \pm 0.25 \ 0.22) \times 10^{-8}$ 794 signal candidates with 52.7 ± 11.2 background events [Phys. Rev. D75 (2007) 012004]

m_{ee} spectra for normalization

12160 candidates for normalization Acceptance $\sim 4.7\%$ Background < 1%

 $_{2} N_{K}$ dominat by external uncertainty from BR

m _{ee} [MeV/c ²]
NA62
preliminary
result:
ncertainty
contributions

KTeV, PRD 75 (2007) 012004 $(6.84 \pm 0.35) \times 10^8$ Knecht et al., PRL 83 (1999) $(6.2 \pm 0.3) \times 10^8$ Dorokhov and Ivanov, PRD 75 (2007) $(6.23 \pm 0.09) \times 10^8$

Hoferichter et al., PRL 128 (2022) $(6.25 \pm 0.03) \times 10^8$

 $BR(\pi^o \to e^+e^- | x > 0.95) = (5.86 \pm 0.30_{stat.} \pm 0.11_{syst.} \pm 0.19_{ext.}) \times 10^{-8}$ = (5.86 ± 0.37) × 10⁻⁸

 $BR(\pi^o \to e^+e^-) = (6.22 \pm 0.39) \times 10^{-8}$

Husek and Leupold, EPJ C 75 (2015)

	$\delta \mathcal{B} \left[10^{-8} \right]$	$\delta \mathcal{B}/\mathcal{B}$ [%]
Statistical uncertainty	0.30	5.1
Total external uncertainty	0.19	3.2
Total systematic uncertainty	0.11	1.9
Trigger efficiency	0.07	1.2
Radiative corrections for $\pi^{0} ightarrow e^{+}e^{-}$	0.05	0.9
Background	0.04	0.7
Reconstruction and particle identification	0.04	0.7
Beam simulation	0.03	0.5 ²⁷

 $K^+ \rightarrow \pi \pi^0 \mu e$

- □ Normalization channel $K^+ \rightarrow \pi^+ e^+ e^-$
- Similar final state (3 tracks with one pion and pne electron)
- Same trigger stream
- Close decay
- $470 < m_{\pi ee} < 505 \text{ MeV}/c^2$
- 10975 candidate observed
- Background contamination $O(10^{-3})$

Published results in

arXiv:2409.12981

Submitted to Phys. Lett. B Background mechanism considered

NA62

DIF = decay-in-flight

Direct = no mis-PID involved

Background source	B	$\pi^0\pi^-\mu^+e^+$	$\pi^0\pi^+\mu^-e^+$	$\pi^0\pi^+\mu^+e^-$
$K^+ ightarrow \pi^+ \pi^0 \pi_{ m D}^0$	$4.1 imes 10^{-4}$	$e^- ightarrow \pi^-$	$e^- ightarrow \mu^-$	$e^+ \rightarrow \pi^+ \text{ or } e^+ \rightarrow \mu^+$
$K^+ \rightarrow \pi^+ \pi_{\rm D}^0 \gamma^- (E_{\gamma}^* > 10 \text{ MeV})$	7.8×10^{-6}	$e^- ightarrow \pi^-$	$e^- \to \mu^-$	$e^+ \! \rightarrow \! \pi^+ \text{ or } e^+ \! \rightarrow \! \mu^+$
$K^+ ightarrow \pi^+ \pi^{\overline{0}} e^+ e^{-1}$	4.2×10^{-6}	$e^- \rightarrow \pi^-$	$e^- ightarrow \mu^-$	$e^+ \! \rightarrow \! \pi^+ \text{ or } e^+ \! \rightarrow \! \mu^+$
$K^+ \rightarrow \pi_{\mathrm{D}}^0 \mu^+ \nu \gamma ~(E_{\gamma}^* \! > \! 10 \; \mathrm{MeV})$	7.4×10^{-7}	$e^- \rightarrow \pi^-$	_	$e^+ \rightarrow \pi^+$
$K^+ ightarrow \pi^{\overline{0}} \pi^0_{ m D} \mu^+ u$	$7.9 imes 10^{-8}$	$e^- ightarrow \pi^-$	_	$e^+ \rightarrow \pi^+$
$K^+ \rightarrow \pi^+ \pi^0 \pi^0, \ \pi^0 \rightarrow e^+ e^-$	$2.6 imes 10^{-9}$	$e^- ightarrow \pi^-$	$e^- \to \mu^-$	$e^+ \! \rightarrow \! \pi^+ \text{ or } e^+ \! \rightarrow \! \mu^+$
$K^+ \rightarrow \pi^+ \pi^0 + K^+ \rightarrow \pi^+ \pi^+ \pi^-$	$1.1 imes 10^{-2}$	$\pi^+ \rightarrow e^+$	$\pi^+ \to e^+$	$\pi^- ightarrow e^-$
$K^+ \rightarrow \pi^+ \pi^0 \pi^0 + K^+ \rightarrow \pi^+ \pi^+ \pi^-$	$1.0 imes 10^{-3}$	$\pi^+ \rightarrow e^+$	$\pi^+ \to e^+$	$\pi^- ightarrow e^-$
$K^+ \rightarrow \pi^0 e^+ \nu + K^+ \rightarrow \pi^+ \pi^+ \pi^-$	$2.8 imes 10^{-3}$	π^+ DIF	π^- DIF	$\pi^- ightarrow e^-$
$K^+ \rightarrow \pi^0 \mu^+ \nu + K^+ \rightarrow \pi^+ \pi^+ \pi^-$	$1.8 imes 10^{-3}$	$\pi^+ ightarrow e^+$	$\pi^+ \to e^+$	$\pi^- ightarrow e^-$
$K^+ ightarrow \pi^+ \pi^0_{ m D} + K^+ ightarrow \mu^+ u$	$1.5 imes 10^{-3}$	_	—	$e^+ ightarrow \gamma$
$K^+ ightarrow \pi^+ \pi^0_{ m D} + K^+ ightarrow \pi^+ \pi^0$	$5.0 imes 10^{-4}$	$e^- ightarrow \pi^-$	$e^- \to \mu^-$	π^+ DIF
$K^+ ightarrow \pi^+ \pi^0 \pi^0_{ m D} + K^+ ightarrow \mu^+ u$	$2.6 imes 10^{-4}$	$e^- \rightarrow \pi^-$	$e^- ightarrow \mu^-$	direct
$K^+ ightarrow \pi^+ \pi^0 \pi^0_{ m D} + K^+ ightarrow \pi^+ \pi^0$	$8.3 imes 10^{-5}$	$e^- \rightarrow \pi^-$	$e^- ightarrow \mu^-$	π^+ DIF
$K^+ ightarrow \pi^0 \mu^+ u + K^+ ightarrow \pi^+ \pi_{ m D}^0$	$8.0 imes 10^{-5}$	$e^- \rightarrow \pi^-$	$e^- ightarrow \mu^-$	direct
$K^+ ightarrow \pi_{ m D}^0 \mu^+ u + K^+ ightarrow \pi^+ \pi^0$	8.0×10^{-5}	$e^- \rightarrow \pi^-$	$e^- ightarrow \mu^-$	direct
$K^+ ightarrow \pi^+ \pi^0 \pi^0 + K^+ ightarrow \pi^+ \pi_{ m D}^0$	4.2×10^{-5}	$e^- \rightarrow \pi^-$	$e^- ightarrow \mu^-$	π^+ DIF
$K^+ ightarrow \pi_{ m D}^0 e^+ u + K^+ ightarrow \pi^0 \mu^+ ar{ u}$	$2.0 imes 10^{-5}$	$e^- ightarrow \pi^-$	—	$e^+ \rightarrow \pi^+$
$K^+ ightarrow \pi^{\overline{0}} e^+ u + K^+ ightarrow \pi^0_{ m D} \mu^+ u$	$2.0 imes 10^{-5}$	$e^- ightarrow \pi^-$	—	$e^+ \rightarrow \pi^+$
$K^+ \to \pi^0 \mu^+ \nu + K^+ \to \pi^+ \pi^0 \pi_{ m D}^0$	1.4×10^{-5}	$e^- ightarrow \pi^-$	$e^- ightarrow \mu^-$	direct
$K^+ ightarrow \pi^0 \mu^+ u + K^+ ightarrow \pi^0_{ m D} \mu^+ u^-$	$1.3 imes 10^{-5}$	$e^- ightarrow \pi^-$	—	$e^+ \rightarrow \pi^+$
$K^+ ightarrow \pi^0_{ m D} \mu^+ \nu + K^+ ightarrow \pi^+ \pi^0 \pi^0$	$6.8 imes 10^{-6}$	$e^- ightarrow \pi^-$	$e^- ightarrow \mu^-$	direct
$K^+ \rightarrow \pi^{-}\pi^- e^+ \nu + K^+ \rightarrow \pi^0 \mu^+ \nu$	1.4×10^{-6}	direct	π^- DIF	$\pi^- ightarrow e^-$
$K^+ \to \pi^0 \pi^0 e^+ \nu + K^+ \to \pi^+ \pi^+ \pi^-$	1.4×10^{-6}	π^+ DIF	π^- DIF	$\pi^- \to e^-$

23.10.2024

LNV&LFV STATE-OF-THE-ART

NA62 searches with Run1 data	Channel		NA62 UL @ 90% CL	Improvement
$\mathbf{K}^{+} \rightarrow \pi^{-} \mathbf{e}^{+} \mathbf{e}^{+}$	$K^+ \to \pi^- e^+ e^+$	5.3×10^{-11}	Phys. Lett. B 830 (2022) 137172	factor ~12
$K^+ \rightarrow \pi^- \mu^+ \mu^+$ (25% of dataset)	$K^+ \to \pi^- \mu^+ \mu^+$	4.2×10^{-11}	Phys. Lett. B 797 (2019) 134794	factor ~2
$\mathbf{K}^+ \rightarrow \pi^- \mu^+ \mathbf{e}^+$	$K^+ \rightarrow \pi^- \mu^+ e^+$	4.2×10^{-11}		factor ~12
K → π+μ-e- (BNL)	$K^+ \rightarrow \pi^+ \mu^- e^+$	6.6×10^{-11}	Phys. Rev. Lett. 127 (2021) 12, 131802	factor ~8
$\mathbf{K}^+ \rightarrow \pi^- \pi^0 \mathbf{e}^+ \mathbf{e}^+$	$K^+ \to \pi^- \pi^o e^+ e^+$	8.5×10^{-11}	Phys. Lett. B 830 (2022) 137172	first search
$\mathbf{K}^{+} \rightarrow \pi^{0} \pi^{-} \mu^{+} \mathbf{e}^{+}$	$K^+ \to \pi^o \pi^- \mu^+ e^+$	2.9×10^{-10}		first search
$\mathbf{K}^{+} \rightarrow \pi^{0} \pi^{+} \mu^{-} \mathbf{e}^{+}$	$K^+ \to \pi^o \pi^+ \mu^- e^+$	3.1×10^{-10}	arXiv:2409.12981	first search
$\mathbf{K} \rightarrow \pi^{*}\pi^{*}\mu^{*}\mathbf{e}^{*}$ $\mathbf{K}^{+} \rightarrow \mu^{-}\nu \mathbf{e}^{+}\mathbf{e}^{+}$	$K^+ \to \pi^o \pi^+ \mu^+ e^-$	5.0×10^{-10}	Submitted to Phys. Lett. B	first search
$\pi^{0} \rightarrow \mu^{-} e^{+}$	$K^+ \rightarrow \mu^- \nu e^+ e^+$	2.1×10^{-8}	Phys. Lett. B838 (2023) 137679	factor ~250
$\pi^{0} \rightarrow \mu^{+} e^{-} (BNL)$	$\pi^o ightarrow \mu^- e^+$	3.4×10^{-9}	Phys. Rev. Lett. 127 (2021) 12, 131802	factor ~10
10 ⁻¹² 10 ⁻¹¹ 10 ⁻¹⁰ 10 ⁻⁹ Upper limits of decay BRs at 90% CL				
			Plusblished results	

Published results in **Phys. Rev. Lett. 133 (2024) 111802 JHEP 09 (2023)**

ALP search

- > Production mechanism: B meson decay: $B \rightarrow K^{(*)}a$
- Model independent approach: assume mass m_a , lifetime τ_a and coupling to be independent parameters
- BR(B → Ka)×BR(a →
 ℓℓ) vs τ_a for each mass separately

$X \rightarrow hadrons$

Background sources

- > Combinatorial data-driven event overlay (negligible)
- Neutrino-induced: GENIE+PYTHIA+GEANT4 (negligible)
- > Prompt: data-driven+GEANT4, inelastic interaction of halo μ (< 10^{-4} in all channels)
- > Upstream: data-driven+GEANT4, particles selected by the GTK achromat:
 - Upstream interactions (veto by ANTIO and vertex)
 - \Box K_s candidates (3 σ window around m_{K_s} kept masked)
 - □ K^+ -induced background (simulated using selected single K^+ tracks forced to decay in $K^+ \rightarrow \pi^+ \pi^- \pi^-$ in FV)

Example signal region for $A' \rightarrow \pi^+\pi^-$ SR: ellipse center $\{Z_{\text{TAX}}, \text{CDA}_{\text{TAX}}\} = \{23\text{ m}, 0\text{ mm}\},\$ semi-axes of 23m and 40mm CR: $CDA_{TAX} < 150 \text{mm}$ and $-7 \text{m} < Z_{TAX} < 53 \text{m}$ [mm] 200 180 ¥ 160 140 120 200mm remsstrahlung)→: Production: $\varepsilon_{AI} = 10^{-1}$ 10^{3} Decay: BR($A' \rightarrow \pi^+ \pi^-$) = Ε S 120 0.0 100 Events 80 60 10 100 -200 20 40 60 Z_{TAX} [m]

PRELIMINARY RESULTS

Channel	$N_{\rm exp,CR} \pm \delta N_{\rm exp,CR}$	$N_{\rm exp,SR} \pm \delta N_{\rm exp,SR}$	$N_{\rm obs,SR}^{p>50}$	$N_{\rm obs,SR+CR}^{p>50}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005	3	4
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004	3	5
$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$	1	1
$\pi^+\pi^-\pi^0\pi^0$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$	1	1
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$	1	1
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$	1	2
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$	1	1

Summary of background expecteation (68% CL) for each final state and minimum number of observed events for a background-only p-value above 5σ

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$

- Model-independent BR
 - BR $(K^+ \to \pi^+ \mu^+ \mu^-) = (9.15 \pm 0.08) \times 10^{-8}$
 - Improvement by a factor ≥ 3
 - Consistent with previous measurements

BLOIS 2024

- > ChPT form factor parameter
 - $a_+ = -0.575 \pm 0.013$, $b_+ = -0.722 \pm 0.043$
 - Compatible with previous measurements (as expected by LFU) in $\mu\mu$ and ee channel

 $K^+ \rightarrow \pi^o e^+ \nu \gamma$

- Decay described in ChPT as direct emission, inner bremsstrahlung and their interference
- > BR strongly **depends on** E_{γ} and $\theta_{e\gamma}$ cuts in K^+ rest frame
- > Three kinematic regions considered

 $R_j = \frac{\text{BR}(K^+ \to \pi^o e^+ \nu \gamma \mid E_{\gamma}^j, \theta_{e,\gamma}^j)}{\text{BR}(K^+ \to \pi^o e^+ \nu)}$

> Test of **T-conservation** via T-odd variable

$\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_e} \times \overrightarrow{p_{\pi}})}{m_{\gamma}^3}$, $A_{\xi} = \frac{N_+ - N}{N_+ + N}$					
		State of the art:			
	$E_{\gamma}^{j}, \theta_{e\gamma}^{j}$	$\mathcal{O}(p^6)$ ChPT	ISTRA+	ΟΚΑ	
	, ,	[EPJ C 50 (2007)]	[PAN 70 (2007)]	[EPJ C 81 (2021)]	
$R_1 imes 10^2$	$E_{\gamma} > 10$ MeV, $ heta_{e\gamma} > 10^{\circ}$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	
$R_2 imes 10^2$	$E_{\gamma} >$ 30 MeV, $ heta_{e\gamma} >$ 20 $^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	
$R_3 imes 10^2$	$E_{\gamma} > 10$ MeV, $0.6 < \cos heta_{e\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	

NA62 measurements of R_j smaller than $\mathcal{O}(p^6)$ ChPT by 5% relative (disagreemenr: 3 standard deviations) Improvement on experimental precision of R_j measurements by a factor > 2

		range 1	range 2	range 3
	$R imes 10^2$	$1.715\pm0.005_{\rm stat}\pm0.010_{\rm syst}$	$0.609\pm0.003_{\rm stat}\pm0.006_{\rm syst}$	$0.533\pm0.003_{\rm stat}\pm0.004_{\rm syst}$
23.1	$A_{\xi} imes 10^2$	$-0.1\pm0.3_{\rm stat}\pm0.2_{\rm syst}$	$-0.3\pm0.4_{\rm stat}\pm0.3_{\rm syst}$	$-0.9\pm0.5_{\rm stat}\pm0.4_{\rm syst}$

34

$K^+ \rightarrow \ell^+ N$

NA62 Coll., Phys. Lett. B 807 (2020) 135599 (e channel) NA62 Coll., Phys. Lett. B 816 (2021) 136259 (μ channel)

NA62 results:

- > $|U_{e4}|^2 \text{ UL } \mathcal{O}(10^{-9})$ complimentary to search for $\pi^+ \to e^+ N$
- > $|U_{\mu4}|^2$ UL $\mathcal{O}(10^{-8})$ complimentary to search for $\pi^+ \to \mu^+ N$
- > Muon channel extension:
 - $\mathbf{K}^+ \rightarrow \boldsymbol{\mu}^+ \boldsymbol{\nu} \boldsymbol{X}$ scalar or vector with $m_{\boldsymbol{X}} \in 10 310 \text{ MeV/c}^2 \text{ UL } \mathcal{O}(10^{-5} 10^{-7})$
 - $BR(K^+ \to \mu^+ \nu \nu \overline{\nu}) < 1.0 \times 10^{-6} @ 90\% CL$ NA62 Coll., Phys. Lett. B816 (2021) 136259