

Recent measurements of the CKM angle γ at LHCb

Fidan Suljik

University of Oxford

on behalf of the LHCb collaboration

35th Rencontres de Blois

Château de Blois, France, October 20-25, 2024

• Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the quark mixing

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

• Unitarity of V_{CKM} represented by a triangle¹ in the complex plane

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

• Weak phase γ is the only angle **easily accessible at tree level**

$$\gamma = \arg\left(-\frac{V_{ud} \ V_{ub}^*}{V_{cd} \ V_{cb}^*}\right)$$

Hadronic parameters can be determined from data
 => theoretical uncertainty within the Standard Model on γ is negligible²

Introduction

Tree-level (direct measurement)³

Direct measurements of γ at tree level are

expected to be benchmarks of the Standard

Loop-level (indirect measurement)³

 Indirect measurements consist of global fits to the unitary triangle. Inputs include loop processes, where New Physics effects are expected to contribute

A discrepancy between direct and indirect measurements would be a clear sign of New Physics

Model

Direct measurements of γ in $B \rightarrow DK$ like decays

- The *D* meson is a superposition of D^0 and \overline{D}^0 states, which are reconstructed in common final states
- Both D^0 and \overline{D}^0 need to be able to decay to the same final state
- Interference between $b \rightarrow cW$ and $b \rightarrow uW$ transitions gives sensitivity to γ

Fidan Suljik

LHCb γ combination

• LHCb γ +charm combination⁵ 2022

$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$

- Expected sensitivity for Run 1-2 of about 4° surpassed
- World average dominated by LHCb
- Golden channel: $B^{\pm} \rightarrow DK^{\pm}$
 - Most precise measurement from a single analysis to date in $B^{\pm} \rightarrow [K_s h^+ h^-]_D h'^{\pm}$ decays at LHCb⁶: $\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$
- Strategy to cover all B and D decay combinations to improve overall sensitivity to γ
- Important to perform analyses in sub-dominant channels to provide further constraints and cross-checks
 - Different systematic uncertainties (important for the future)
 - Different background contributions

[5] LHCb-CONF-2022-003 [6] JHEP **02** (2021) 169

5

LHCb γ combination 2024

• LHCb γ +charm combination⁷ 2024 includes recent measurements

		B decay	D decay	Ref.	Dataset	Status since
						Ref. [14]
•	Recent measurements with other B	$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	[35]	Run 1&2	As before
	decays	$B^{\pm} ightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	Run 1&2	New
	• $B^{\pm} \rightarrow D^* K^{\pm}$	$B^{\pm} ightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[36]	Run 1&2	As before
	$\mathbf{D}^0 \times \mathbf{D} \mathbf{V}^{*0}$	$B^\pm \to D h^\pm$	$D ightarrow h^{\pm} h^{\prime \mp} \pi^0$	[37]	Run 1&2	As before
	• $D^+ \rightarrow DK$	$B^\pm \to D h^\pm$	$D ightarrow K_{ m S}^0 h^+ h^-$	[38]	Run 1&2	As before
	• $B^{\perp} \rightarrow DK^{*\perp}$	$B^{\pm} ightarrow Dh^{\pm}$	$D o K^0_{ m S} K^{\pm} \pi^{\mp}$	[39]	Run 1&2	As before
		$B^\pm o D^* h^\pm$	$D ightarrow h^{\pm} h^{\prime \mp} \ (\mathrm{PR})$	[35]	Run 1&2	As before
•	Different families of <i>D</i> decays used	$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{ m S}^0 h^+ h^- ({ m PR})$	[20]	Run 1&2	New
	$D \rightarrow h^+ h^- (h^+ h^-) + parrow but$	$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{ m S}^0 h^+ h^- ~({ m FR})$	[21]	Run 1&2	New
	• $D \rightarrow n n (n n)$. Harrow but	$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	$[22]^{\dagger}$	Run 1&2	Updated
	multiple solutions	$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	[22] [†]	Run 1&2	Updated
	• $D \to K_{S}^{0}h^{+}h^{-}$: wide single solution	$B^\pm \to D K^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	$[22]^{\dagger}$	Run 1&2	New
	5	$B^{\pm} ightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before
•	Time dependent measurement	$B^0 ightarrow DK^{*0}$	$D ightarrow h^{\pm} h'^{\mp}$	[23]	Run 1&2	Updated
•		$B^0 \to DK^{*0}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	[23]	Run 1&2	Updated
	• $B_s^0 \rightarrow D_s^+ K^{\pm}$	$B^0 ightarrow DK^{*0}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[24]	Run 1&2	Updated
		$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[41]	Run 1	As before
		$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	$[25,42]^\dagger$	Run 1&2	Updated
		$B^0_s \rightarrow D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[43]	Run 1&2	As before

• *CP*-even eigenstates^{8,9}

•
$$D o K^+K^-$$
, $D o \pi^+\pi^-$, $D o \pi^+\pi^-\pi^+\pi^-$

Coherence factor (for non-resonant K^* contribution)

$$R_{CP+} = \frac{\Gamma(B^- \to [h^+h^-]_D K^{*-}) + \Gamma(B^+ \to [h^+h^-]_D K^{*+})}{\Gamma(B^- \to [K^-\pi^+]_D K^{*-}) + \Gamma(B^+ \to [K^+\pi^-]_D K^{*+})} \frac{\mathcal{B}(D^0 \to K^-\pi^+)}{\mathcal{B}(D^0 \to h^+h^-)} = 1 + r_B^2 + 2\kappa r_B \cos(\delta_B) \cos(\gamma)$$

$$A_{CP+} = \frac{\Gamma(B^- \to [h^+h^-]_D K^{*-}) - \Gamma(B^+ \to [h^+h^-]_D K^{*+})}{\Gamma(B^- \to [h^+h^-]_D K^{*-}) + \Gamma(B^+ \to [h^+h^-]_D K^{*+})} = \frac{2 \kappa r_B \sin(\delta_B) \sin(\gamma)}{R_{CP+}}$$

- Measure rate ratios to the favoured mode
- Measure rate asymmetries between B^- and B^+
- Relatively smaller observable *CP* violation due to amplitudes of different sizes
- Measure *CP* observables, directly related to physics parameters

Fidan Suljik

Blois 2024

- non-*CP* eigenstates¹⁰
 - Cabibbo-favoured (CF) / doubly Cabibbo-suppressed (DCS): $D \to K^-\pi^+$, $D \to \pi^-K^+$ $D \to K^-\pi^+\pi^-\pi^+$, $D \to \pi^-K^+\pi^-\pi^+$

$$R_{ADS} = \frac{\Gamma(B^- \to [\pi^- K^+]_D K^{*-}) + \Gamma(B^+ \to [\pi^+ K^-]_D K^{*+})}{\Gamma(B^- \to [K^- \pi^+]_D K^{*-}) + \Gamma(B^+ \to [K^+ \pi^-]_D K^{*+})} = r_B^2 + r_D^2 + 2\kappa r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)$$

$$A_{ADS} = \frac{\Gamma(B^- \to [\pi^- K^+]_D K^{*-}) - \Gamma(B^+ \to [\pi^+ K^-]_D K^{*+})}{\Gamma(B^- \to [\pi^- K^+]_D K^{*-}) + \Gamma(B^+ \to [\pi^+ K^-]_D K^{*+})} = \frac{2 \kappa r_B r_D \sin(\delta_B + \delta_D) \sin(\gamma)}{R_{ADS}}$$

- External inputs: D decay parameters r_D , δ_D
- Maximal interference due to similar sized amplitudes

Measuring γ : BPGGSZ modes

- Three-body self-conjugate final states^{11,12}
 - $D \rightarrow K_s^0 \pi^+ \pi^-$, $D \rightarrow K_s^0 K^+ K^-$: complex system of resonances
 - The kinematics of the *D* decay can be represented in 2D in a Dalitz plot
 - *CP* observables $x_{\pm} = r_B \cdot \cos(\delta_B \pm \gamma)$ $y_{\pm} = r_B \cdot \sin(\delta_B \pm \gamma)$ $x_{\pm} + iy_{\pm} = r_B \cdot e^{i(\delta_B \pm \gamma)}$
 - Interference appears as different distributions of the D meson Dalitz plot for B^- and $B^+ \rightarrow$ counting experiment in each bin
 - Yields in each Dalitz bin

$$N_{\pm i}^{-} \propto F_{\pm i} + (x_{-}^{2} + y_{-}^{2})F_{\mp i} + 2\kappa\sqrt{F_{i}F_{-i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i})$$
Fractional yield of

Fidan Suljik

Blois 2024

$B^{\pm} \rightarrow D^* h^{\pm}, D^* \rightarrow D \pi^0 / \gamma, D \rightarrow K_S^0 h^+ h^-$

- Measurement of γ in $B^{\pm} \rightarrow D^* h^{\pm}$ with $D^* \rightarrow D\pi^0 / \gamma$, $D \rightarrow K_S^0 h^+ h^-$ decays
- Partially reconstructed D^* meson, where π^0/γ is not reconstructed. Measurement performed in Dalitz bins of the D decay phase space. Also performed the corresponding fully reconstructed measurement¹⁷ and the $D \rightarrow h^+h^-$ analysis¹⁸
- The physics parameters of interest can be interpreted from the measured *CP* observables x_{\pm} , y_{\pm} : $\gamma = (92^{+21}_{-17})^{\circ}$

$B^0 \to DK^{*0}, D \to h^+h^-(h^+h^-)$

- Measurement of γ in $B^0 \rightarrow [h^+h^-(h^+h^-)]_D K^{*0}$ decays
- Simultaneous fit for each D meson final state and each B^0 flavour, which is tagged using the kaon child from the K^{*0}
- *CP*-violating observables measured in $B_{(s)}^0 \rightarrow DK^{*0}$

 K^+

 K^{*0}

В

 π^{-}

D

h

$B^0 \rightarrow DK^{*0}$, $D \rightarrow h^+h^-(h^+h^-)$

- The physics parameters of interest can be interpreted from the measured CP-violating observables, B_s^0 results consistent with no CP violation
- **Multiple solutions** due to trigonometric equations relating *CP* observables to physics parameters. Solution compatible with world average:

 $\gamma = (61.7 \pm 8.0)^{\circ}$

• **Combining** with $B^0 \rightarrow [K_S^0 h^+ h^-]_D K^{*0}$ measurement¹⁹ removes two solutions and strengthens the one consistent with the world average, yielding:

 $\gamma = (63.2^{+6.9}_{-8.1})^{\circ}$

- Result for γ consistent with LHCb γ combination
- Measurement of γ in B^0 decays coming closer to the average value obtained with B^{\pm} decays

12

- Measurement of γ in $B^{\pm} \rightarrow DK^{*\pm}$ decays, **comprehensive** study:
 - $D \rightarrow h^+h^-(h^+h^-)$
 - $D \rightarrow K_S^0 h^+ h^ \longleftarrow$ first measurement at LHCb in this channel
- Advantages of this channel compared to golden channel:
 - Clean signal peak
 - No mis-ID component
 - Lower partially reconstructed backgrounds

• Simultaneous fit for the different categories defined by *B* charge and *D* decay mode to measure the *CP* observables

- Small asymmetries within the favoured modes, while larger asymmetries observed for the suppressed modes and *CP*-eigenstates modes
- *CP* observables measured for **all three types of** *D* **decay modes considered** in this analysis
- First observation of the suppressed $B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}]_D K^{*\pm}$ and $B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}\pi^{\pm}\pi^{\mp}]_D K^{*\pm}$ decays

• The physics parameters of interest can be interpreted from the measured *CP*-violating observables

 $\gamma = (63 \pm 13)^{\circ}$

- Model-independent results, using strong-phase c_i , s_i inputs from CLEO and BESIII
- Result for γ consistent with world average

Time dependent $B_S^0 \rightarrow D_S^{\mp} K^{\pm}$

- *CP*-violating parameters measured in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays
- Interference between mixing and decay amplitudes
 - Time dependent
- *CP*-violating observables functions of γ and mixing phase β_s
 - $\gamma 2\beta_s$
- Initial flavour of the *B* meson determined using **flavour tagging**

16

Time dependent $B_S^0 \rightarrow D_S^{\mp} K^{\pm}$

- Signal obtained from 2D fit in $m(B_s^0)$ and $m(D_s^{\mp})$ with *sPlot* technique
- Fit to **decay-time distribution** of background-subtracted $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ signal to determine the *CP* observables
- Result for γ when combining with Run 1: $\gamma = (81^{+12}_{-11})^{\circ}$
- Most precise determination of γ in B_s^0 meson decays

Fidan Suljik

Blois 2024

October 23, 2024

LHCb γ combination 2024

Fidan Suljik

- LHCb γ +charm combination 2024 $\gamma = (64.6 \pm 2.8)^{\circ}$
- World's most precise direct determination of γ . Expected sensitivity for Run 1-2 of about 4° surpassed
- Result for γ from neutral B^0 decays now closer to the value obtained in charged B^{\pm} decays
- Consistency between *B* species now more evident

LHCb-CONF-2024-004

Preliminary

Summer 2024

0.8

0.6

0.4

 B_s^0 decays B^0 decays

 B^+ decays

All Modes

68.3%

Future prospects

- Recent γ measurements included in the latest LHCb combination, further improving the precision
- Strategy to cover all B and D decay combinations to improve sensitivity to γ , providing **further constraints** and cross-checks
- Only a few more Run 2 results still to be completed
- **Statistically limited**: a precision of less than 1° is expected^{20,21} with more data to be collected in Run 3 and beyond

Upgrade I (50 fb^{-1})	Upgrade II (300 fb^{-1})
1°	0.35°

Removal of hardware trigger in Run 3 good for hadronic final states such as those used for γ measurements, with large increase in yields at low momentum²²

Fidan Suljik

Conclusions

- Presented recent **measurements of the CKM angle** *γ* **at LHCb**:
 - $B^{\pm} \rightarrow D^* h^{\pm}, D^* \rightarrow D\pi^0/\gamma, D \rightarrow K_S^0 h^+ h^-$
 - $B^0 \to DK^{*0}, D \to h^+h^-(h^+h^-)$
 - $B^{\pm} \rightarrow DK^{*\pm}$, $D \rightarrow h^+h^-(h^+h^-)$, $K^0_Sh^+h^-$
 - $B_s^0 \to D_s^{\mp} K^{\pm}$
 - LHCb γ +charm combination 2024

JHEP **02** (2024) 118

JHEP **05** (2024) 025

LHCb-PAPER-2024-023 (in preparation)

LHCb-PAPER-2024-020 (in preparation)

LHCb-CONF-2024-004

- Strong impact from **combination with** measurements of **γ from the same B decay channels**
- Expected sensitivity of about 4° for Run 1-2 surpassed

 $\gamma = (64.6 \pm 2.8)^{\circ}$

• More precise determination of γ in the future, which is a standard candle measurement of *CP* violation in the Standard Model

