

Charm physics at Belle & Belle II

Cristina Martellini, on behalf of the Belle & Belle II collaborations

Cristina Martellini, 23.10.2024

35th Rencontres de Blois, Particle Physics and Cosmology, Blois 20-24 October 2024

✓ Belle (1999-2010) & Belle II(2018-current) operate at asymmetric e^+e^- colliders

- Collisions at or near $\Upsilon(4S) : \sqrt{s} = 10.58 \text{ GeV}$
- Belle @ KEKB (1999-2010) : $\mathscr{L}_{peak} = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, $\mathscr{L}_{int} = 1 \text{ ab}^{-1}$
- Belle II @ SuperKEKB (2019-current) : $\mathscr{L}_{peak} = 4 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, $\mathscr{L}_{int} = 0.42 \text{ ab}^{-1}$

✓ Belle & Belle II are now synergic experiments

- Belle data can be analysed with the Belle II analysis software
 - Analysis can be performed with a combination of Belle and Belle II data
 - Important for charm analysis, where large statistics is crucial to improve the precision
 - Well-known **initial state** condition & **clean environment**
 - Efficient reconstruction of **neutrals**
 - Boosted center of mass that allows for time-dependent measurements
 - Hermetic detectors with excellent PID and tracking performance

 $\mathscr{L}_{int} = 1 \text{ ab}^{-1}$ $\operatorname{cm}^{-2} \operatorname{s}^{-1}, \mathscr{L}_{int} = 0.42 \text{ ab}^{-1}$

Belle II @ SuperKEKB

Charm physics at a B factory

- Primarly a B factory, but **not only**! Per ab⁻¹ (events $\times 10^9$) : 1.1 $B\bar{B}$, 1.3 $c\bar{c}$, 2.1 $q\bar{q}$, 0.9 $\tau^+\tau^-$
 - Two possible production mechanisms
 - One or more charmed hadrons produced in B mesons decays : $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B} \rightarrow X_c$
 - Two charmed hadrons produced from continuum, along with fragmentation particles : $e^+e^- \rightarrow c\bar{c} \rightarrow X_c$

$e^+e^- \rightarrow c\bar{c} \rightarrow D_{\rm tag}X_{\rm frag}D_{\rm sig}$

- Typically only reconstruct the signal channel

- Also provides access to charmed baryons
- No entanglement between two charmed hadrons, inaccessible strong phase

Measurement of time-integrate CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ decays

Search for CPV in $D^+_{(S)} \to K^0_S K^- \pi^+ \pi^+$ decays

Model-Independent measurement of $D^0 - \overline{D}^0$ mixing parameter in $D^0 \to K_S^0 \pi^+ \pi^-$ decays

Measurements of the branching fractions of $\Xi_c^0 \to \Xi^0 \pi^0$, $\Xi_c^0 \to \Xi^0 \eta$, $\Xi_c^0 \to \Xi^0 \eta'$ and asymmetry parameter of $\Xi_c^0 \rightarrow \Xi^0 \pi^0$

Two approaches

$$A_{raw} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} \qquad A_T = \frac{\Gamma(C_{TP} > 0) - \Gamma(C_{TP} < 0)}{\Gamma(C_{TP} > 0) + \Gamma(C_{TP} < 0)} \quad \bar{A}_T = \frac{\Gamma(-\bar{C}_{TP} > 0) - \Gamma(-\bar{C}_{TP} - \bar{C}_{TP})}{\Gamma(-\bar{C}_{TP} > 0) + \Gamma(-\bar{C}_{TP} - \bar{C}_{TP})} \qquad A_{Taw} = A_{CP} + A_{FB} + A_{e}$$

$$A_{raw} = A_{CP} + A_{FB} + A_{\epsilon}$$

- Obtain asymmetry from difference in partial widths
- A_{raw} includes asymmetries in production and reconstruction
 - A_{FB} : arising from γZ^0 interference
 - A_{ϵ} : reconstruction of final-state particles
 - need a control channel
- in charm: singly-Cabibbo suppressed two-body decays

$a_{CP} \propto sin(\phi)sin(\delta)$

- Measure asymmetry in kinematic observable (e.g triple-product C_{TP})
- $A_T \neq 0$ can also arise from final-state interaction
 - isolate CP violation with a_{CP}
 - a_{CP} is unaffected by production and reconstruction asymmetries
- in charm: four-body decay channels

 $a_{CP} \propto sin(\phi)cos(\delta)$

Time-integrated CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$

- Using combined datasets from Belle and Belle II
- $\rightarrow D^0 \rightarrow K_S^0 K_S^0$ is a singly Cabibbo suppressed (SCS) decay, which involves the interference of $c \rightarrow us\bar{s}$ and $c \rightarrow ud\bar{d}$ amplitudes

- CP asymmetry, A_{CP} , may be enhanced to be an observable level within the standard model
- The world average determination of A_{CP} ($D^0 \rightarrow K_S^0 K_S^0$): (-1.9 ± 1.0) % is limited by statistical

$$A_{CP}(D^0 \to K_S^0 K_S^0) = \frac{\Gamma(D^0 \to K_S^0 K_S^0) - \Gamma(\bar{D}^0 \to K_S^0 K_S^0)}{\Gamma(D^0 \to K_S^0 K_S^0) + \Gamma(\bar{D}^0 \to K_S^0 K_S^0)}$$

• The flight distance of the K_S^0 (with respect to the D^0 vertex) is exploited to provide separation of the peaking background $(D^0 \rightarrow K_S^0 \pi^+ \pi^-)$ from the signal

We introduce a background rejection variable

 $S_{min}(K_{S}^{0}) = log[min(L_{1}/\sigma_{L_{1}}, L_{2}/\sigma_{L_{2}})]$

Time-integrated CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$

• Using combined datasets from Belle and Belle II

- Fit to $m(D^0\pi +)$ and $S(K_s^0)$ to extract signal yield and raw asymmetry

Preliminary, paper in preparation

CPV in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$

Most precise measurements

- better mass resolution and background suppression at Belle II
 - Thanks to improved detector design/ performance and additional pixel detector

CPV in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$

- ➡ Procedure to extract the asymmetry
 - Suppress background using D decay length significance, vertex fit quality
 - Divide candidates in 4 categories and parametrise signal yields as a function of N(D^{\pm}), A_T , a_{CP}^{T-odd}
 - Systematic effects related to efficiency variation of C_{TP}
 - Results are among world's most precise measurements, no evidence of CPV

$$\begin{split} N(D_{(s)}^{+}, C_{TP} > 0) &= \frac{N_{+}}{2}(1 + A_{T}) \\ N(D_{(s)}^{+}, C_{TP} < 0) &= \frac{N_{+}}{2}(1 - A_{T}) \\ N(D_{(s)}^{-}, \bar{C}_{TP} > 0) &= \frac{N_{-}}{2}(1 + A_{T} - 2a_{CP}) \\ N(D_{(s)}^{-}, \bar{C}_{TP} < 0) &= \frac{N_{-}}{2}(1 - A_{T} + 2a_{CP}) \end{split}$$

$$D^{+}: a_{CP} = (-0.23 \pm 0.4)$$
$$D_{s}^{+}: a_{CP} = (-0.02 \pm 0.2)$$

arXiV.2409.1577

 $5(stat) \pm 0.15(syst))\%$ $24(stat) \pm 0.08(syst))\%$

CPV in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$

Procedure to extract the asymmetry

$$C_{QP} = (\vec{p}_{K^-} \times \vec{p}_{\pi_h^+})$$

 $_{t})\cdot\vec{p}_{K_{S}^{0}}\times\vec{p}_{\pi_{l}^{+}}$

- Using combined datasets from Belle and Belle II
 - Model-independent measurement of $D^0 \overline{D}^0$ mixing parameters (SCS)

Mixing parameters:

$$x = \frac{m_1 - m_2}{\Gamma} \qquad \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma},$$

Mass of the $D_{1(2)}$ state

World average values : $x = (4.07 \pm 0.44) \times 10^{-3}$

$$y = (6.47 \pm 0.24) \times 10^{-3}$$

Using combined set from Belle (951fb⁻¹) and Belle II (408 fb⁻¹) : $D^{*+} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \pi^+$

• Signal and background are separated using fits to the two-dimensional distribution of D^0 mass : $M(K_S^0\pi^+\pi^-)$ and energy released in the D^{*+} : **Q**

Preliminary,

Width of the $D_{1(2)}$ state

$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle$$
$$CP |D^0\rangle = + |\bar{D}^0\rangle$$

• Using combined datasets from Belle and Belle II

Result of the (M,Q) fit to the data integrated over the Dalitz-plot bins to the Belle II and Belle data samples

> $x = (4.0 \pm 1.7(stat) \pm 0.4(sys)) \times 10^{-3}$ $y = (2.9 \pm 1.4(stat) \pm 0.3(sys)) \times 10^{-3}$

Correlation between x and y is negligible

Sample average purity 95.8%

Results 20% and 14% more precise than the currently model-dependent from only Belle dataset

Systematics smaller than Belle analysis model-dependent

Preliminary, paper in preparation

Study of $\Xi_c^0 \to \Xi^0 h^0$

• Using combined datasets from Belle and Belle II

- Several theoretical approaches developed to deal with non-factorizable amplitudes from W-exchange and internal W-emission

JHEP10(2024)045

W

Study of $\Xi_c^0 \rightarrow \Xi^0 h^0$

- Using combined datasets from Belle and Belle II
- Also first asymmetry parameter $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ measurement, related to P-violation (also comparable to theoretical expectations)

$$\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15(stat) \pm 0.23(sys)$$

Through a simultaneous fit depending on the differential decay rate

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) c$$

$$\alpha(\Xi^0 \to \Lambda \pi^0) = -0.349 \pm 0.009$$

 $\cos\theta_{\Xi^0}$

- Belle continues to produce important measurements more than 10 years after data taking
- First model-independent measurement of $D^0 \overline{D}^0$ mixing 20% and 14% more precise than previous model-dependent measures
- First measurements of all three $\mathscr{B}(\Xi_c^0 \to \Xi^0 h^0)$ and asymmetry parameter for $\Xi_c^0 \to \Xi^0 \pi^0$
 - Asymmetry parameters for $\Xi_c^0 \to \Xi^0 \eta$ and $\Xi_c^0 \to \Xi^0 \eta'$ will become accessible with the larger data sample to be collected by Belle II in the future

Looking forward to more data in the coming years

35th Rencontre de Blois - C.Martellini

Thank you for your attention

Back up slides

KEK-SUPERKEKB complex

- Asymmetric e^+e^- colliders
- Collisions mainly at 10.58 GeV, i.e at $\Upsilon(4S)$ resonance

KEKB

1999-2010

- $e^+ (3.5 \text{ GeV}) e^- (8 \text{ GeV})$
- L_{peak} : 2.1 × 10³⁴ cm⁻²s⁻¹ [achieved]

SuperKEKB

-
$$e^+$$
 (4 GeV) e^- (7 GeV)

Target:

$$\int Ldt = 50 \ ab^{-1}$$

$$L_{peak} = 6 \times 10^{35} \ cm^{-2} s^{-1}$$

Achieved:

$$\int Ldt > 530 \ fb^{-1}$$

$$L_{peak} = 4.7 \times 10^{34} \ cm^{-2} s^{-1}$$

Current world record

$$Ldt = 50 \ ab^{-1}$$

$$L_{peak} = 6 \times 10^{35} \ cm^{-2} s^{-1}$$

Searching for New Physics in charm decays

Three paths for discovery

- Processes allowed in the Standard Model at tree level
 - SM rates and uncertainties are known
 - e.g. CKM triangle relations
- Processes suppressed in the Standard Model at tree level
 - New physics may contribute at a detectable level beyond the SM prediction
 - e.g. penguin decays, D-mixing
- Processes forbidden in the Standard Model to all orders
 - Any evidence may indicate new physics
 - Sometimes complicated by SM backgrounds

Highlights:

- BF of $\Xi_c^0 \to \Xi^0 h^0$
- CPV in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^-$
- CP asymmetry in $D^0 \to K_S^0 K_S^0$
- Mixing in $D^0 \overline{D}^0$

Open question unexplained by $SM \rightarrow New$ *Physics beyond the* SM

Belle & Belle II operates at the "Intensity Frontier"

High precision measurements, probing SM indirectly - as measurements of the SM-forbidden or suppressed process

B-factories:

 e^+e^- collider (a) $\Upsilon(4S) \to B\bar{B}$

SuperKEKB collider : $530 fb^{-1}$ @ $\Upsilon(4S)$ [2019-current]

Belle & Belle II detectors

ECL (electromagnetic calorimeter): Updated electronics

- **PID** (Particle Identification):
- **CDC** (Central drift chamber):
- Better K/ π separation under higher bkg level
- larger volume, smaller drift cells and faster electronics
- VTX: + 2 layers PXD (pixel detector) + 4 layers SVD (Silicon vertex detector)

- Well-known **initial state** condition
- Benefits from <u>clean environment</u>
- Efficient reconstruction of **neutrals**
- Boosted center of mass that allows for time-dependent measurements
- Hermetic detectors ideal for studying neutral or invisible decays

Belle II TDR

neasurements visible decays

Belle II data -taking

Updated on 2024/07/01 09:43 JST

We are suffering from sudden beam loss events, with large doses at the interaction region.

In a couple of them two channels of **PXD were damaged**

- as a precaution, it has been decided to keep PXD off while investigating the sources of the sudden beam loss and implement countermeasures to stabilize the beam operation

Study of $\Xi_c^0 \rightarrow \Xi^0 h^0$

• Using combined datasets from Belle and Belle II

- Several theoretical approaches developed to deal with non-factorizable amplitudes from W-exchange and internal W-emission
- Experimental measurements on BF will help clarify theoretical predictions

JHEP10(2024)045

Time-integrated CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$

- Using combined datasets from Belle and Belle II
 - We introduce a background rejection variable

 $S_{min}(K_{S}^{0}) = log[min(L_{1}/\sigma_{L_{1}}, L_{2}/\sigma_{L_{2}})]$

• Fit to $m(D^0\pi +)$ and $S(K_s^0)$ to extract signal yield and raw asymmetry

• Using combined datasets from Belle and Belle II

Item	Belle	Belle II
$K_{\rm s}^0$ selection	All $K^0_{ m s}$ in K_S0:mdst	Merge V0 candidates and
	$0.488 < M(\pi^+\pi^-) < 0.508 \text{GeV}/c^2$	two charged pions combinations
	$L/\sigma_L > 20$ (after	apply TreeFitter
	the first TreeFit below)	$0.488 < M(\pi^+\pi^-) < 0.508 \text{GeV}/c^2$
		$L/\sigma_L > 20$ (after
		the first TreeFit below)
Tracks directly	$ \Delta r < 1.0~{ m cm}$	
from D^0 and	$ \Delta z < 5.0~{ m cm}$	
the slow pion		
remove B	$p^*(D^*)>2.5{ m GeV}/c{ m for} \Upsilon(4S)$	
mesons decay	$p^*(D^*) > 3.1 \text{GeV}/c \text{ for } \Upsilon(5S)$	
	First fit :	
	TreeFit with $K_{\rm s}^0$ mass constraint, IP constraint,	
	daughter momentum update	
	$\chi^2 < $	< 200
Vertex Fitting	Second fit :	
	TreeFit with D° and $K_{\rm s}^{\circ}$ mass constraints, IP constraint,	
	daughter momentum update	
	Cloned tracks removal	
signal region	$ M(K_{ m s}^0\pi^+\pi^-)-m_{D^0} <15{ m MeV}/c^2$	
	$4.85 < Q < 6.85 \mathrm{MeV}/c^2$	
sideband	$1.97 < M(K_{\rm s}^0 \pi^+ \pi^-) < 2.00 {\rm GeV}/c^2$	
	Q < 2	20 MeV

XIII-ICFNP - C.Martellini

Preliminary, paper in preparation

• Using combined datasets from Belle and Belle II

Result of the (M,Q) fit to the data integrated over the Dalitz-plot bins to the Belle II and Belle data samples

 $x = (4.0 \pm 1.7(stat) \pm 0.4(sys)) \times 10^{-3}$ $y = (2.9 \pm 1.4(stat) \pm 0.3(sys)) \times 10^{-3}$

Correlation between x and y is negligible

Results 20% and 14% more precise than the currently model-dependent from only Belle dataset

Systematics smaller than Belle analysis

Preliminary, paper in preparation

nal yield $[10^6]$	Average purity [%]
0.697	95.6
0.163	95.9
1.014	95.7
0.176	97.5
2.049	95.8

. ... -

🛉 Data

Random pion

Other background

0.4

0.5

- Fit

10⁵

 10^{4}

5 fs

Candidates

Sample average purity 95.8%

0.2

0.3

 σ_t [ps]

0.1

- Using combined datasets from Belle and Belle II
 - Model-independent measurement of $D^0 \overline{D}^0$ mixing parameters (SCS)

Mixing parameters:

Mass of the $D_{1(2)}$ state

World average values : $x = (4.07 \pm 0.44) \times 10^{-3}$

 $y = (6.47 \pm 0.24) \times 10^{-3}$

Using combined set from Belle (943fb⁻¹) and Belle II (407 fb⁻¹)

• Signal and background are separated using fits to the two-dimensional distribution of D^0 mass : $M(K_S^0\pi^+\pi^-)$ and energy released in the D^{*+} : Q

$$: D^{*+} \to D^0 (\to K_S^0 \pi^+ \pi^-) \pi^+$$

• Using combined datasets from Belle and Belle II

Result of the (M,Q) fit to the data integrated over the Dalitz-plot bins to the Belle II and Belle data samples

 $x = (4.0 \pm 1.7(stat) \pm 0.4(sys)) \times 10^{-3}$

 $y = (2.9 \pm 1.4(stat) \pm 0.3(sys)) \times 10^{-3}$

Correlation between x and y is negligible

Results 20% and 14% more precise than the currently model-dependent from only Belle dataset

Systematics smaller than Belle analysis

Sample average purity 95.8%

35th Rencontre de Blois - C.Martellini

Preliminary, paper in preparation

1.9