

Study of scalar and vector mesons in the charmed hadron decays at BESIII

Bai-Cian Ke (ZhengZhou University) On behalf of BESIII Collaboration

> 20-25, Oct 2024 @Blois, France The 35th Rencontres de Blois

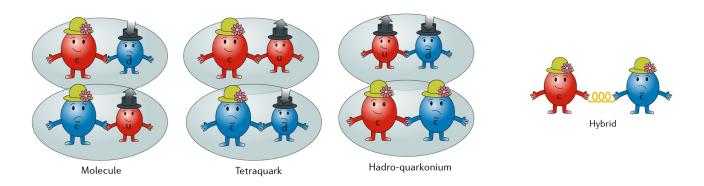
Outline

D Motivation

- BESIII charm dataset
- **D** Hadronic decays
- **D** Semi-leptonic Decay
- Summary & Outlook

Motivation-Quark model

- The constituent quark model has been very successful in explaining the composition of hadrons in the past few decades.
- > The observed meson spectrum is described as bound $q\overline{q}$ states grouped into SU(n) flavor multiplets.
- > The properties of pseudoscalar $(J^P = 0^-)$ and vector $(J^P = 1^-)$ mesons can be well explained, but the properties of scalar mesons $(S_0, J^P = 0^+)$ is still controversial. PDG: Tentative classification

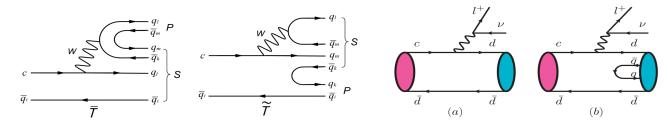

	Γ [MeV]	isospin i	structure
$a_0(980)$	~ 50	1	$Kar{K},qqar{q}ar{q}$
$f_0(980)$	~ 50	0	$Kar{K}, qqar{q}ar{q}$
$f_0(500)$	~ 800	0	$\pi\pi, qqar qar q$
$K_0^*(700)$	~ 600	$\frac{1}{2}$	$K\pi, qqar qar qar q$
$a_0(1450)$	265	1	$uar{d}, dar{u}, dar{d} - uar{u}$
$f_0(1370)$	~ 400	0	$d\bar{d} + u\bar{u}$
$f_0(1710)$	125	0	$s\bar{s}$
$K_0^*(1430)$	294	$\frac{1}{2}$	$uar{s}, dar{s}, sar{u}, sar{d}$

3

Motivation-Scalar mesons

> Puzzles: mass degeneracy between $a_0(980)$ and $f_0(980)$, broad width of K(700) and $f_0(500)$.

- \succ It is generally believed that they are not the ordinary $q\bar{q}$ state.
- > Many interpretations: compact tetraquark $q^2 \overline{q}^2$ state, molecule (K \overline{K} bound) state, hybrid etc^[1-4].



Motivation-Scalar mesons

Charm mesons have abundant final state interactions, which the production of exotic states essentially involves, such as quark exchange, resonance formation, etc.

Some examples:

1. There are more possible topological amplitudes for tetraquark, i.e. the branching fraction will be different from the $q\bar{q}$ structure[1].

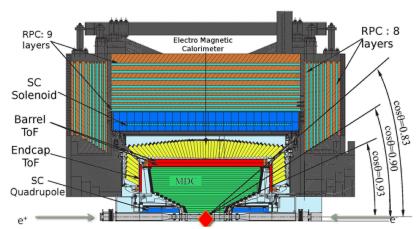
- 2. Different quark structures have different mixing situations. The mixing angle facilitate a connection of all form factors in $D \rightarrow S_0 e^+ v_e$ decays under the SU(3) flavor symmetry[2].
- 3. In the SU(3) symmetry limit, the ratio of $\frac{\mathcal{B}(D^+ \to f_0(980)l^+ v_l) + \mathcal{B}(D^+ \to f_0(500)l^+ v_l)}{\mathcal{B}(D^+ \to a_0^0(980)l^+ v_l)}$ has different expectations for different quark explanations[3].

Motivation-vector meson ϕ

$\phi(1020)$ de	CAY MODES
-----------------	-----------

Mode		Fraction (Γ_i / Γ)
Γ_1	K^+K^-	$(49.1\pm0.5)\%$
Γ_2	$K^0_L \ K^0_S$	$(33.9\pm0.4)\%$
Γ_3	$ ho\pi+\pi^+\pi^-\pi^0$	$(15.4\pm0.4)\%$

> Most ϕ measurements are performed in the e^+e^- annihilation and K - p scattering, which may encounter challenges from complex background and various interferences.

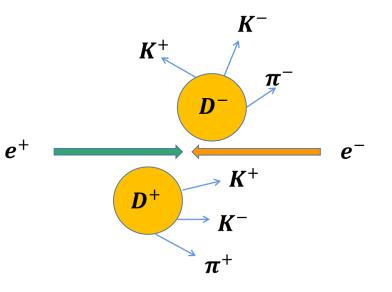

A new, independent method is needed to cross-check ϕ measurements

- > The $D_{(s)}^+$ decay products contain a large number of ϕ mesons, providing excellent experimental conditions for the study of ϕ mesons.
- → The ϕ relative BF measurement can be obtained (by measuring the BF of $D^+_{(s)} \rightarrow \phi \pi^+$ in different final states of ϕ).

BESIII charm dataset

 $D^{\pm,0}$: 20.3 fb⁻¹ @ E_{cm} =3.773 GeV D_s^{\pm} : 7.33 fb⁻¹ @ E_{cm} =4.128 - 4.226GeV Λ_c^{\pm} : 6.1 fb⁻¹ @ E_{cm} =4.600-4.843GeV

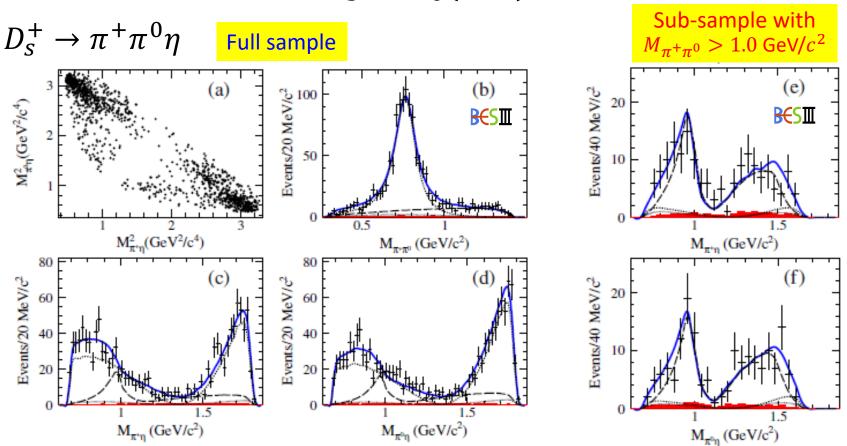
Pair-production near threshold



Single Tag (ST): reconstruct only one of the $(D\overline{D} \text{ or } \Lambda_c^+ \overline{\Lambda}_c^-)$

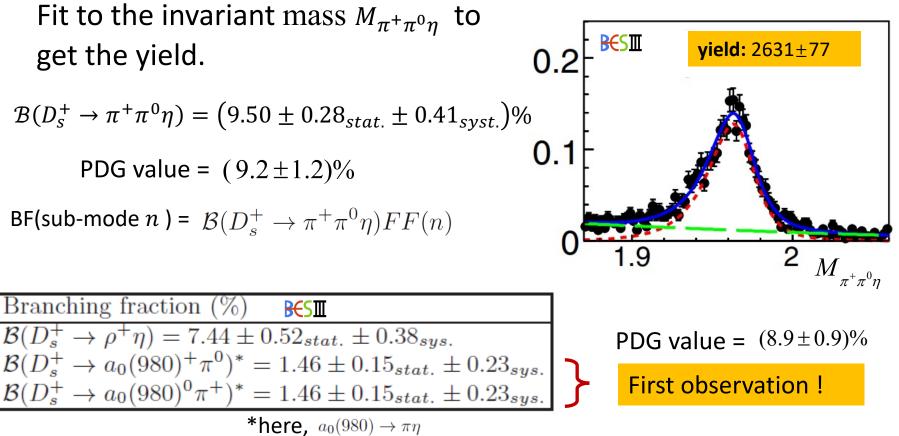
- Relative high background
- Higher efficiency

Double Tag (DT): reconstruct both of the hadrons


- Clean samples
- Systematics in the tag side almost cancel out
- Absolute branching fraction measurement

in the hadronic decays

Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^0 \eta$ - Observation of $D_s^+ \rightarrow a_0(980)\pi$


PRL123, 112001 (2019)

Dots with error bar: data; solid: total fit; dotted: $D_s^+ \rightarrow \rho^+ \eta$; dashed: $D_s^+ \rightarrow a_0(980)\pi$ (with a stat. significance of 16.2 σ).

Branching Fraction Results of $D_s^+ ightarrow \pi^+ \pi^0 \eta$

PRL123, 112001 (2019)

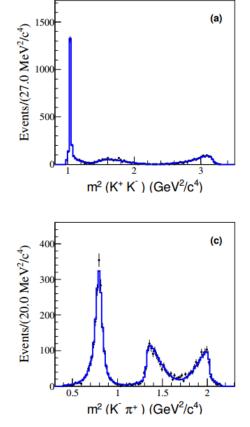
• $\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0 \text{ is larger than other measured pure W-annihilation decays}$ $(D_s^+ \to p\bar{n}, D_s^+ \to \omega \pi^+)$ by one order.

Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^- \eta$

2139 events with purity > 85%

=(3.

decays.


PRD 104, L071101 (2021)

$$\begin{array}{l} \mathcal{B}(D_{s}^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}\eta) \\ = (3.12 \pm 0.13 \pm 0.09)\% \\ \mathcal{B}(D_{s}^{+} \rightarrow a_{0}^{+}(980)\rho^{0}, a_{0}^{+}(980)) \\ \rightarrow \pi^{+}\eta) \\ = (0.21 \pm 0.08 \pm 0.05)\% \\ \begin{array}{l} \mathcal{B}(D_{s}^{+} \rightarrow a_{0}^{+}(980)\rho^{0}, a_{0}^{+}(980)) \\ \Rightarrow \pi^{+}\eta) \\ = (0.21 \pm 0.08 \pm 0.05)\% \\ \begin{array}{l} \mathcal{B}(D_{s}^{+} \rightarrow a_{0}^{+}(980)\rho^{0}, a_{0}^{+}(980)) \\ \Rightarrow \pi^{+}\eta) \\ = (0.21 \pm 0.08 \pm 0.05)\% \\ \begin{array}{l} \mathcal{B}(D_{s}^{+} \rightarrow a_{0}^{+}(980)\rho^{0}, a_{0}^{+}(980)) \\ \Rightarrow \pi^{+}\eta) \\ = (0.21 \pm 0.08 \pm 0.05)\% \\ \begin{array}{l} \mathcal{B}(D_{s}^{+} \rightarrow a_{0}^{+}(980)\rho^{0}, a_{0}^{+}(980)\rho^{0}) \\ \mathcal{B}(D_{s}^{+} \rightarrow a_{0}^{+}(980)\rho^{0}) \\ \mathcal{B}(D_{s}^{+}$$

Amplitude analysis of $D_s^+ \rightarrow K^+ K^- \pi^+$

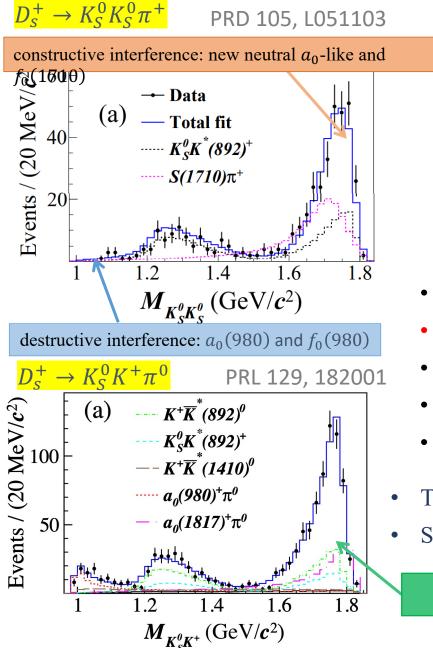
Dalitz plot projections:

The best precision at present

 $\mathcal{B}(D_s^+ \to K^+ K^- \pi^+) = (5.47 \pm 0.08_{stat.} \pm 0.13_{syst.})\%$

	BF (%)			
Process	BESIII (this analysis)	PDG		
$\overline{D_s^+ o ar{K}^*(892)^0 K^+, ar{K}^*(892)^0 o K^- \pi^+}$	$2.64\pm0.06_{\rm stat}\pm0.07_{\rm sys}$	2.58 ± 0.08		
$D_s^+ \rightarrow \phi(1020)\pi^+, \ \phi(1020) \rightarrow K^+K^-$	$2.21 \pm 0.05_{\rm stat} \pm 0.07_{\rm sys}$	2.24 ± 0.08		
$D_s^+ \to S(980)\pi^+, S(980) \to K^+K^-$	$1.05\pm0.04_{\rm stat}\pm0.06_{\rm sys}$	1.14 ± 0.31		
$D_s^+ \to \bar{K}_0^* (1430)^0 K^+, \ \bar{K}_0^* (1430)^0 \to K^- \pi^+$	$0.16 \pm 0.03_{\rm stat} \pm 0.03_{\rm sys}$	0.18 ± 0.04		
$D_s^+ \to f_0(1710)\pi^+, f_0(1710) \to K^+K^-$	$0.10\pm0.02_{\mathrm{stat}}\pm0.03_{\mathrm{sys}}$	0.07 ± 0.03		
$D_s^+ \to f_0(1370)\pi^+, f_0(1370) \to K^+K^-$	$0.07\pm0.02_{\mathrm{stat}}\pm0.01_{\mathrm{sys}}$	0.07 ± 0.05		
$D_s^+ \to K^+ K^- \pi^+$ total BF	$5.47 \pm 0.08_{\rm stat} \pm 0.13_{\rm sys}$	5.39 ± 0.15		

Both $a_0(980)$ and $f_0(980)$ decays to K^+K^- . Impossible to separate them here


Black dots with error bars: data Blue solid lines: fit results

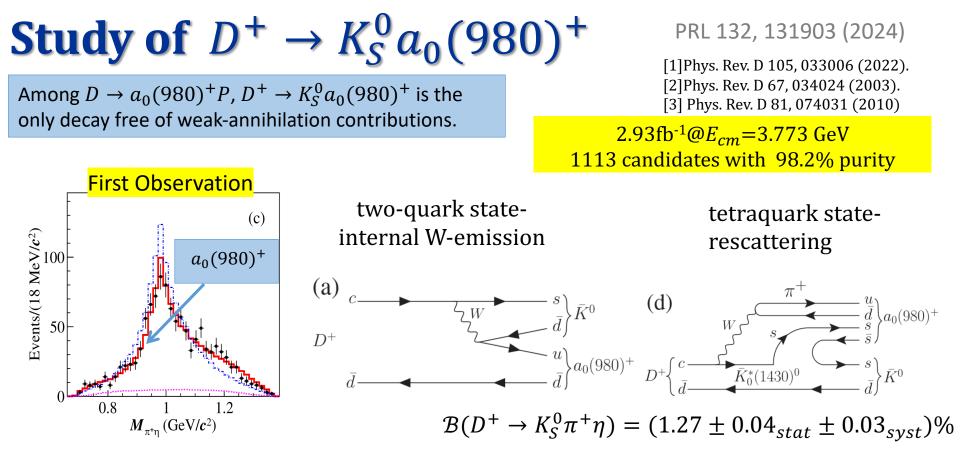
PRD 104.012016(2021)

Isospin configurations:

 $a_0(980)$ $I=1 \rightarrow (|K^+K^- > - |K^0\overline{K^0} >)$ $f_0(980)$ $I=0 \rightarrow (|K^+K^- > + |K^0\overline{K^0} >)$ The comparison of K^+K^- and $K_S^0K_S^0$ spectrum will reveal more information!

Observation of new a_0 **-like triplet in** D_s **decays**

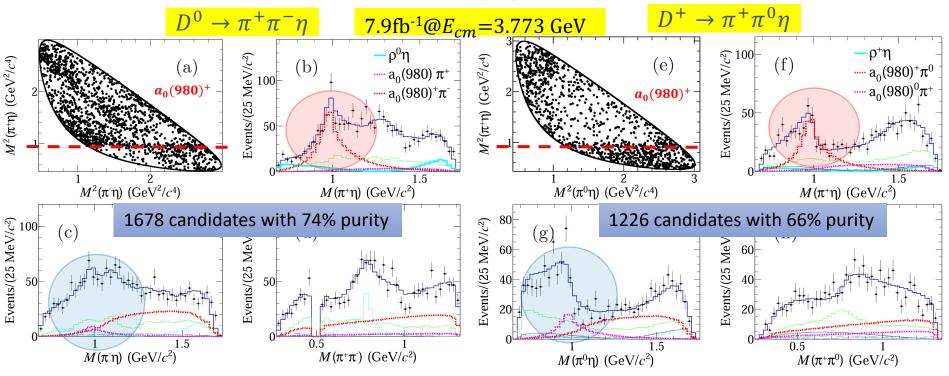
[1] Eur. Phys. J. C 82, 225 (2022).
 [2] Phys.Rev. D105, 114014 (2022).
 [3] PRD 104, 072002 (2021)


A new a_0 isospin triplet!

Amplitude	BF (10 ⁻³)
$D_s^+ \rightarrow \bar{K}^* (892)^0 K^+$	$4.77 \pm 0.38 \pm 0.32$
$D_s^+ \to K^*(892)^+ K_S^0$	$2.03 \pm 0.26 \pm 0.20$
$D_s^+ \to a_0(980)^+ \pi^0$	$1.12 \pm 0.25 \pm 0.27$
$D_s^+ \to \bar{K}^* (1410)^0 K^+$	$0.88 \pm 0.21 \pm 0.19$
$D_s^+ \to a_0(1817)^+ \pi^0$	$3.44 \pm 0.52 \pm 0.32$

- Double tag method
- $D_s^+ \rightarrow a_0(1817)^+ \pi^0$ is observed for the first time
- Significance > 10σ
- $M=1.817 \pm 0.008 \pm 0.020 \text{ GeV}/c^2$
- $\Gamma = 0.097 \pm 0.022 \pm 0.015 \text{ GeV}/c^2$
- The isovector partner of $f_0(1710)[1]$ or X(1812)?[2]
- Same resonance observed in η_c to $\pi\pi\eta$ by BaBar[3]?

new charged a_0 -like in $K_S^0 K^+$ mass

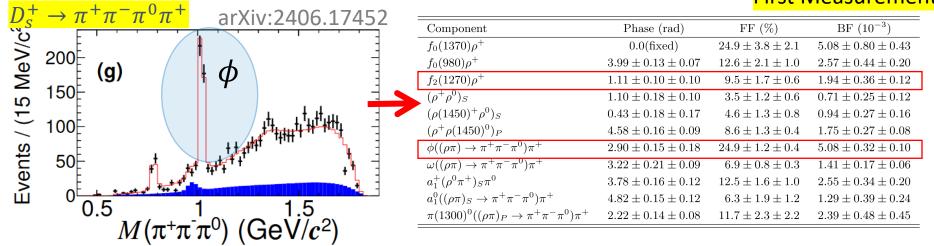

spectrum

- $\mathcal{B}(D^+ \to K_S^0 a_0(980)^+, a_0(980)^+ \to \pi^+ \eta) = (1.33 \pm 0.05_{stat} \pm 0.04_{syst})\%$
- Provide sensitive constraints in the extraction of contributions from external and internal W-emission diagrams of $D \rightarrow SP$
- Understand the inconsistency between theory and experiment of the $D \rightarrow a_0(980)^+P[1-3]$.

Observation of $D \rightarrow a_0(980)\pi$

arXiv:2404.09219

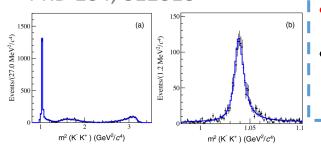
Amplitude	Phase (in unit rad)	FF (%)	Significance (σ)	BF $(\times 10^{-3})$
$D^0 \to \rho^0 \eta$	0 (fixed)	$15.2 \pm 1.7 \pm 1.0$	> 10	$0.19 \pm 0.02 \pm 0.01$
$D^0 \to a_0(980)^- \pi^+$	$0.06 \pm 0.16 \pm 0.12$	$5.9 \pm 1.3 \pm 1.0$	8.9	$0.07 \pm 0.02 \pm 0.01$
$D^0 \to a_0(980)^+\pi^-$	$-1.06 \pm 0.12 \pm 0.10$	$44.0\pm4.0\pm5.3$	> 10	$0.55 \pm 0.05 \pm 0.07$
$D^0 \to a_2(1320)^+ \pi^-$	$-1.16 \pm 0.25 \pm 0.23$	$2.1 \pm 0.9 \pm 0.8$	4.5	$0.03 \pm 0.01 \pm 0.01$
$D^0 \to a_2(1700)^+ \pi^-$	$0.08 \pm 0.17 \pm 0.23$	$5.5 \pm 1.8 \pm 2.7$	6.1	$0.07 \pm 0.02 \pm 0.03$
$D^0 \to (\pi^+\pi^-)_{S-\text{wave}}\eta$	$-0.92 \pm 0.29 \pm 0.14$	$3.9 \pm 1.8 \pm 2.1$	5.3	$0.05 \pm 0.02 \pm 0.03$
$r_{+/-}$		$7.5^{+2.5}_{-0.8} \pm 1.7$	7.7^{*}	_
$D^+ \to \rho^+ \eta$	$-4.03 \pm 0.19 \pm 0.13$	$9.3 \pm 3.0 \pm 2.1$	6.0	$0.20 \pm 0.07 \pm 0.05$
$D^+ \to (\pi^+ \pi^0)_V \eta$	$-0.64 \pm 0.22 \pm 0.19$	$15.8\pm4.8\pm5.2$	4.7	$0.34 \pm 0.11 \pm 0.11$
$D^+ \to a_0(980)^+ \pi^0$	0 (fixed)	$43.7 \pm 5.6 \pm 1.9$	9.1	$0.95 \pm 0.12 \pm 0.05$
$D^+ \to a_0 (980)^0 \pi^+$	$2.44 \pm 0.20 \pm 0.10$	$17.0 \pm 4.4 \pm 1.7$	7.9	$0.37 \pm 0.10 \pm 0.04$
$D^+ \to a_2(1700)^+ \pi^0$	$0.92 \pm 0.20 \pm 0.14$	$4.2 \pm 2.1 \pm 0.7$	3.6	$0.09 \pm 0.05 \pm 0.02$
$D^+ \to a_0 (1450)^+ \pi^0$	$0.63 \pm 0.41 \pm 0.30$	$7.0\pm2.8\pm0.7$	4.7	$0.15 \pm 0.06 \pm 0.02$
$r_{+/0}$		$2.6 \pm 0.6 \pm 0.3$	4.0^{*}	-


[1] Phys. Rev. D 105, 033006(2022).

The external W-emission dominates the $D \rightarrow a_0(980)\pi$ decays in the diquark scenario, contrary to expectations of its negligible contribution due to the very small $a_0(980)$ decay constant[1].

- $\mathcal{B}(D^0 \to \pi^+ \pi^- \eta) = (1.24 \pm 0.04_{stat} \pm 0.03_{syst})\%$
- $\mathcal{B}(D^+ \to \pi^+ \pi^0 \eta) = (2.18 \pm 0.12_{stat} \pm 0.03_{syst})\%$
- $a_0(1817)$ is not observed in both channels

Study of $D_s^+ \rightarrow \phi(\pi^+\pi^-\pi^0, K^+K^-)\pi^-$

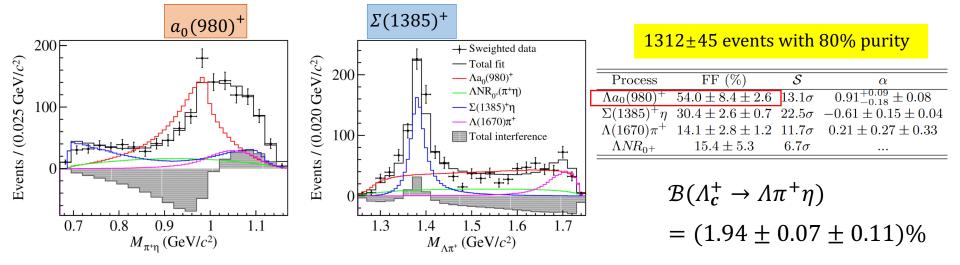

First Measurement

- $\mathcal{B}(D_s^+ \to \pi^+ \pi^- \pi^0 |_{\text{non}-\eta}) = (2.04 \pm 0.08_{stat} \pm 0.05_{syst})\%$
- $\mathcal{B}(D_s^+ \to \phi \pi^+, \phi \to \pi^+ \pi^- \pi^0) = (5.08 \pm 0.32 \pm 0.10) \times 10^{-3}$
- $\mathcal{B}(D_s^+ \to \phi \pi^+, \phi \to K^+ K^-) = (2.21 \pm 0.05 \pm 0.07)\%$

 $D_s^+ \to K^+ K^- \pi^+$

PRD 104, 012016

- $\frac{\mathcal{B}(\phi \to \pi^+ \pi^- \pi^0)}{\mathcal{B}(\phi \to K^+ K^-)} = 0.230 \pm 0.014_{stat} \pm 0.010_{syst}$
 - Deviates from PDG value (0.313 \pm 0.010) % by > 4 σ .
- First measurement of R_{Φ} in charmed mesons, and the

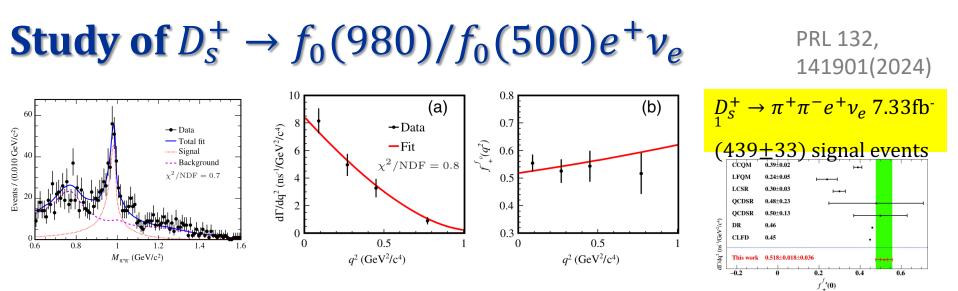

lower than expected value motivates further studies.

Observation of $\Lambda_{\rm c}^+ \rightarrow \Lambda a_0 (980)^+$

arXiv:2407.12270

First observation

[1] J. Phys. G 36, 075005(2009).[2] Phys. Lett. B 820, 136586 (2021).


• Theoretical calculation of $\mathcal{B}(\Lambda_c^+ \to \Lambda a_0(980)^+)$:

 $1.9 \times 10^{-4} \implies$ based on factorization and the pole model[1]

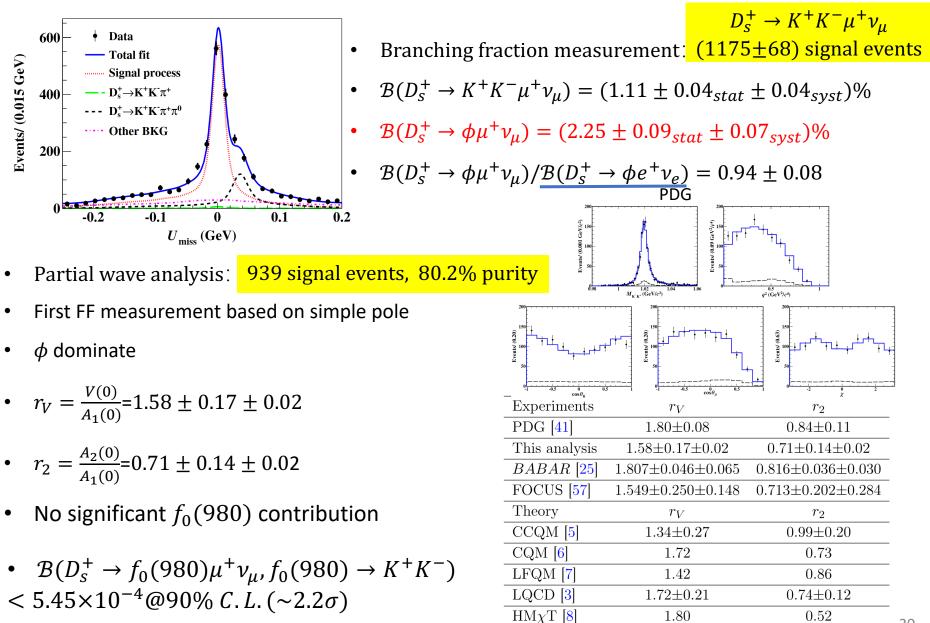
 $1.7 \times 10^{-3} \implies$ considering the rescattering $\Sigma(1385)^+ \eta \rightarrow \Lambda a_0(980)^+[2]$

- We measure $\mathcal{B}(\Lambda_c^+ \to \Lambda a_0(980)^+) = (1.23 \pm 0.21)\%$, which is larger than theoretical calculations by 1-2 orders.
- The difference suggests some unknown decay mechanisms.

in the semi-leptonic decays

• $\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e, f_0(980) \to \pi^+\pi^-) = (1.72 \pm 0.13_{stat} \pm 0.10_{syst}) \times 10^{-3}$

 $\phi = (19.7 \pm 12.8)^{\circ} (s\bar{s} \text{ is dominant based on } |f_0(980)\rangle = sin\phi |\frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})\rangle + cos\phi |s\bar{s}\rangle)$


• First form factor measurement with simple pole form and Flatte formula:

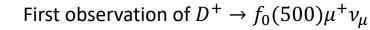
	This work	CLFD 6	DR [6]	QCDSR [7]	QCDSR [8]	LCSR [9]	LFQM [11]	CCQM [12]
$f_{+}^{f_{0}}(0)$	$0.518 \pm 0.018_{\rm stat} \pm 0.036_{\rm syst}$	0.45	0.46	0.50 ± 0.13	0.48 ± 0.23	0.30 ± 0.03	0.24 ± 0.05	0.39 ± 0.02
Difference (σ)				0.1	0.2	4.3	4.3	2.8
ϕ in theory		$(32 \pm 4.8)^{\circ}$	$(41.3 \pm 5.5)^{\circ}$	35°	$(8^{+21}_{-8})^{\circ}$		$(56 \pm 7)^{\circ}$	31°

- $f_{+}^{f_0}(0)|V_{cs}|=0.504\pm0.017\pm0.035$
- Form factor $f_{+}^{f_{0}}(0)=0.518\pm0.018\pm0.036(|V_{cs}|=0.97349\pm0.00016$ PDG)
- First search, $\mathcal{B}(D_s^+ \to f_0(500)e^+\nu_e, f_0(500) \to \pi^+\pi^-) < 3.3 \times 10^{-4}$ at 90% confidence level.

Study of $D_s^+ \rightarrow f_0(980)/\phi \mu^+ \nu_\mu$

JHEP12(2023)072

Study of $D^+ \rightarrow f_0(500) l^+ \nu_l$


+ data

10[±]

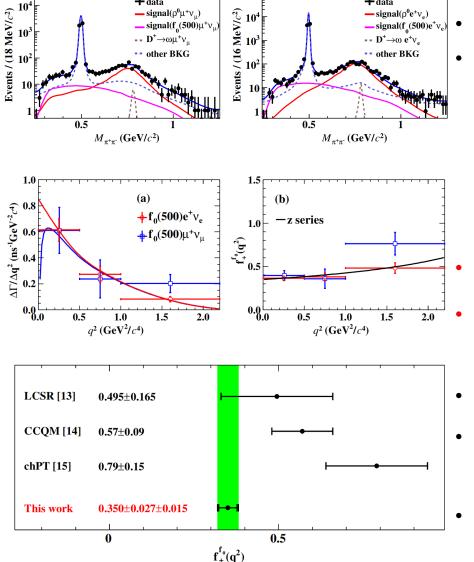
+ data

arXiv:2401.13225

 $D_{\rm s}^+ \to \pi^+ \pi^- l^+ \nu_l \ 2.93 {\rm fb}^{-1}$ $@E_{cm} = 3.773 \text{ GeV}$

First FF measurement of $D^+ \rightarrow f_0(500) l^+ v_l$

· · ·				
Signal mode	$N_{\rm obs}$	$\mathcal{S}(\sigma)$	$\epsilon_{ m sig}$ (%)	$\mathcal{B}_{\rm sig}(\times 10^{-3})$
$f_0(500)\mu^+ u_\mu$	209 ± 38	5.9	18.93 ± 0.13	0.72 ± 0.13
$ ho^0 \mu^+ u_\mu$	496 ± 38	> 10	19.86 ± 0.13	1.64 ± 0.13
$f_0(500)e^+\nu_e$	412 ± 43	> 10	44.76 ± 0.25	0.60 ± 0.06
$ ho^0 e^+ u_e$	1237 ± 47	> 10	44.12 ± 0.25	1.84 ± 0.07


- $f_{+}^{f_0}(0)|V_{cd}|=0.0787\pm0.0060\pm0.0033$
- $f_{+}^{f_0}(0)=0.350\pm 0.027\pm 0.015$

 $(|V_{cd}|=0.22438 \pm 0.00044 \text{ PDG})$

- $\mathcal{B}(D^+ \rightarrow \rho^0 \mu^+ \nu_\mu) / \mathcal{B}(D^+ \rightarrow \rho^0 e^+ \nu_e) = 0.88 \pm 0.10$
- $\mathcal{B}(D^+ \to f_0(500)\mu^+\nu_\mu)/\mathcal{B}(D^+ \to f_0(500)e^+\nu_e)$

 $= 1.44 \pm 0.28$

Consistent with the standard model expectation.

Summary & Outlook

- BESIII has the largest data samples at $D\overline{D}/\Lambda_c\overline{\Lambda}_c$ threshold.
- Light scalar mesons are studied systematically via charm decays.
- BFs and FF measurements help to understand the nature of light scalar mesons.
- The ϕ branching ratio is significant different from the PDG result. Outlook
- Many BFs, amplitude analyses are being studied.
- ϕ decay will be precisely measured in charm decay.
- More scalar mesons could be studied via charm decays.

Thanks for your attention!