

THE DARKSIDE-20k EXPERIMENT AND THE FUTURE LIQUID ARGON DARK MATTER PROGRAM

Daria Santone, University of Oxford On behalf of DarkSide-20k collaboration Blois 2024, 23/10/2024

OXFORD

DARK MATTER CANDIDATES

WIMP "Miracle"

- Weak scale interaction lead to correct density in the universe
- Mass scale: MeV 100 TeV
- Motivated by many theories

2

GLOBAL ARGON DARK MATTER PROGRAM

(20 tonnes FV)

ARGO: 600 tonnes of UAr

50 tonnes of UAr

WIMP SIGNAL & BACKGROUNDs

WIMP SIGNAL

Backgrou

³⁹Ar

γ from rock and

Radiogen (a,n) reaction in d

> Surface contar pro

> > Muon induce

Neutrino col

BACKGROUND

und source	Mitigation strategy
8 decay	Use Underground Argon + pulse sh discrimination
γ,e from material	Pulse shape discrimination Selection material
ic neutron letector material	Material screening & selection Definition of Fiducial volume in the Veto to reject neutron signal
mination due Rn geny	Surface cleaning Reduce the number of surfaces Installation of Rn abated system
ed background	Cosmogenic veto
nerent scatter	Irreducible

4

WIMP SEARCH IN DS-50

50 kg of Underground Argon (UAr) Data taking: 2013 - 2018, total exposure of 0.03 tons x years Low mass search using charge signal only

BACKGROUND REJECTION

TPC filled with UAr in order to reduce Ar-39, which is

Scintillation (S1) pulse shape in LAr

LOW MASS RESULTS

Re-analyse the full DS50 dataset with a more detailed calibration model Phys.Rev.D 107 (2023) 6, 063001

Best limit in the region between 1.2 and 3.6 GeV/ c^2

Reinterpretation of published Ar and Xe resulting including Migdal effects benchmarked again published results

Phys. Rev. Lett. 130, 101001

DIVI-e-SCATTERING RESULTS

Phys. Rev. Lett. 130, 101002 (2023)

• Exclusion limits at 90% C.L. on DM particle

interactions with electron final states

• Limits on dark matter-electron scattering in the [16, 56] MeV/c² mass range for a heavy mediator and

above 80 MeV/c² for a light mediator

φ'

Dark

WIMP SEARCH IN DS-20k

DARKSIDE-20k: overview **Inner detector**

Neutron veto:

- (Gd)PMMA as neutron veto
- Immersed in 35 tonnes of UAr
- Equipped with large array of SiPM for 5 m² coverage Light yield: 2 pe/keV Enclosed in a SS vessel HDPE neutron shield around SS vessel

Filled with 50 ton of Underground Argon (UAr) Equipped with two optical plate -> large array of

S1 (scintillation signal): 10 pe/keV

READOUT: LARGE SiPIN ARRAY

SPADs - Single Photon Avalanche Diodes:

semiconductor devices based on a p-n junction, reverse biased well above breakdown voltage (operating in Geiger mode).

SiPMs - Silicon PhotoMultiplier:

a single SiPM consists of around 94,900 SPADs. Area: 8 x 12 mm²

518 PDUs in the TPC 120 PDUs in the neutron veto **30 PDUs in the outer** veto

TILE:

- Side 1: 5 x 5 cm² array of 24
 SiPMs covering ~24 cm², the signals of all SiPMs are summed
- Side 2: front-end electronics for signal amplifier -> ASIC for veto and discrete element for TPC

Photo Detection Unit (PDU)

16 tiles are assembled together in a PDU: 20 x 20 cm²

• 1 large PCB to individually enable/disable and bias each single tile and to sum the signals from a quadrant

4 tiles are summed together, i.e. 4 tiles correspond to 1 DAQ channel
4 outputs: 1/4 DAQ channels -> 1/4 cables-> lower radioactivity

READOUT: LARGE SiPM ARRAY (2) **Veto PDU TPC PDU**

Laser calibration in liquid nitrogen of TPC-veto PDU determines whether a PDU has a single PE performance good enough to be integrated into the detector. Tests are performed across Italian, UK, and Poland institutions

Edinburgh test stand

Quadrant PE distribution

Quadrant PE distribution

THE PATH TOWARDS PURE UAr: Urania->Aria->DArT

1. Urania: UAr extraction

- UAr extraction plant in Cortex, Colorado, USA
- UAr extraction rate up to 330kg/day with a 99.99% purity

2. ARIA: UAr purification

- Cryogenic distillation column in Sardinia (Italy)
- First module operated according to specs with nitrogen in 2019
- Chemical purification rate: 1 t/day

Eur.Phys.J.C 81 (2021) 4, 359

3. DART

- Double phase TPC with active volume of 1.4 kg of liquid UAr located at Canfranc, Spain
- Ar-39 depletion factor sensitivity: 6 x 10⁴ 90% C.L

13

NEUTRON BACKGROUND

14

Neutron sources:

• ²³⁸U and ²³²Th contaminations of the detector material

- (a,n) reaction in the detector material
- Spontaneous fission decays
- cosmic ray induced neutron production

Radio-assay campaign to control Every components goes into the detector

Neutron detection

- 15 cm of PMMA surrounding the TPC as neutron moderator
- detection of 2.1 MeV gammas from neutron capture on H (53%) in TPC or veto
- R&D on Gd-PMMA development: detection of 8 MeV gamma produced in neutron capture on Gd (64%)

background goal: <0.1 neutron Wimp event in 200 tonne x years

HIGH MASS DARK MATTER SENSITIVITY

Sensitivity to high mass WIMP-nucleon scatter cross section of 7.4 x 10^{-48} cm² for a 1 TeV/c² WIMP for a total exposure of 200 tons x years

LOW MASS SEARCH

https://arxiv.org/pdf/2407.05813, sent to Nature

- DS-20k 1 year QF $N_e \ge 2$
- DS-20k 1 year $QF - N_e - \ge 4$
- DS-50 QF 2023
- PandaX-4T 2023
- XENONnT 2023
- PandaX-4T 2023
- LUX 2021
- XENON1T 2021
- Pico-60 2019
- CDMSlite 2018
- LUX 2017
- CDMS 2013
- Cogent 2013
- DAMA/LIBRA 2008
- Excluded region
- LAr Neutrino fog n=2

- Using only charge signal
- Detailed background from DS-50 data
- First assessment of DS-20k sensitivity to low mass dark matter particle
- Sensitivity below 5 GeV/c^2

WHAT NEXT?

- campaign
- DarkSide-20k is in position to lead the search for WIMPs, with complimentary reach above the LHC center of mass energy
- Fundamental role played by neutron veto detector which is key to expanding the reach beyond heavy WIMPs...

CONCLUSIONS

 DarkSide-20k is pushing the state-of-the-art in several directions: SiPM technology, underground argon extraction & purification, background assay

achieving the <0.1 instrumental backgrounds to the dark matter search! And

Darkside-20k construction has started, data taking will start in 2027

18

DARK MATTER SEARCH IN DARKSIDE

Dual phase Time projector Chamber (TPC)

DarkSide Target material: liquid Ar from underground (UAr)

- Signal: S1 (primary scintillation) + S2 (charge signal)
- S2 light pattern gives x-y position
- Drift time give z position
- S1-S2 relative size give particle information

WIMP NUCLEON INTERACTION

Re-analyse the full DS50 dataset with a more detailed calibration model

Phys. Rev. Lett. 130, 101001

- Electron recoil modelling using ³⁷Ar, ³⁹Ar decay naturally in the early LAr dataset, focus on ionisation signal below 180 eVer
- Nuclear recoil from in-situ neutron calibration (AmC), energy down to 500 eV_{nr}

DARKSIDE SIPI REQUIREMENTS

Quantity

Breakdown voltage

SiPM response - recharge time

Single Photoelectron (SPE) spec

Gain

Signal to noise ratio (SNR)

Dark count rate (DCR)

Internal cross talk (CT) probabili

Afterpulsing (AP) probability

	Requirement
	26.8 +/- 0.2 V
	300 - 600 ns
ectra	distinct PE
	stable gain
	> 8
	< 0.01 Hz/mm² (7 Vov) < 0.1 Hz/mm² (9 Vov)
ity	< 33 % (7 Vov) < 50 % (9 Vov)
	< 10 %

